
UML IN DESIGN OF ASIP

Karel Masařík*, Tomáš Hruška*

* Faculty of Information Technology, BUT, Czech Republic

Abstract: There are many possibilities how to describe the architecture of the embedded
system eventually of the whole microprocessor. The description is realized usually using
any special language, which only rarely provides a formal description of the architecture.
The formal description is useful for an easily verification of the most critical parts of the
architecture. Our task deals with the formal description of the Application Specific
Instruction set Processors (ASIP) in UML. Due to the lower complexity of this type of
processor, it is possible to generate automatically the software toolset from the model,
which provide fluent development of the microprocessor’s applications. The task is to
provide the methodology for fully automatized design of microprocessor base on the UML
description. Copyright © 2006 IFAC

Keywords: ASIP, architecture description language, UML.

1. INTRODUCTION

Embedded systems are getting more important in all
of the branches of human activities, for example in
the medicine, in the form of the small control
systems, or in the form of massive distributed
computer systems, which consist of hundred thousand
embedded computers. Each of these small embedded
computers can be produced for lower price. Recently,
the production of microprocessors has grown rapidly.

Application Specific Instructionset Processors are
used mostly often in the embedded systems.
Particular functions of the hardware of these
processors are available through the application
specific instructions. This means, that each processor
or its family has own instruction set. Specific
software tools like assembler, disassembler,
eventually the whole development system, are
bounded with the specific instruction set. This
automatic generation of software toolset from the
microprocessor description is required. This can be
achieved by using of Architecture Description
Languages (ADL). They provide automatic
generation of software tool on the basis of the
microprocessor model. Usually the design of
microprocessor is supported by specific development
framework, which supports the development using
specific ADL.

Besides ADL it is possible to use for description
other higher-level programming languages like C++
or UML (OMG 2004). Mainly the UML becomes
importance in community of embedded systems
because it helps to overcome the gap between the
specification and implementation. Our research
concentrates on use of the UML as an architecture
description language and the motivation is to provide
the methodology for fully automatized design of
microprocessor which should cover the formal
verification of the microprocessor model too.
However, it remains an open question how best to use
object-oriented notations for architectural description
and whether they are sufficiently expressive as
currently defined.

The development supported with the UML has
following advantages: the architecture is easy to
understand, is consistent during development, and
can be supported by existing tools. Research to
represent microprocessor architecture in UML can be
generally approached in two ways. The first way
maps architecture concept to existing UML notations
just as they are. The second way extends the
vocabulary and semantics of UML to match its
modeling capabilities to the concept of architectures.
The second way can be divided again into the
heavyweight way and lightweight way. The
heavyweight way adds new modeling elements or

replaces existing semantics by directly modifying the
UML metamodel. The lightweight way defines new
modeling elements by means of the extension
mechanism of UML and does not modify the UML
metamodel. We are using the last mentioned
approach.

This article focuses firstly on the base concept of
UML then deals with the design of ADL based on the
UML notation. The research is going out from the
architecture description language ISAC (Hruška
2004) and the name of the ADL based on the UML
notation is UMLISAC.

2. UML AS ADL

UML is general modeling language and does not
provide all concepts that are important for
architecture description. UML must be extended in
order to precisely model architecture and to
automatically generate the software toolset from the
model. In our work we try to overcome the semantic
gap between object oriented notation and the
architecture description.

UML2.0 has much more useful concepts for
architecture description than UML1.x. The UML2.0
defines new constructs such as component,
connectors, and port that make the UML more
suitable for architecture description. The UMLISAC
uses the base concepts of UML. These concepts
consist of the composition and connection,
abstraction, interaction, encapsulation and scalability.
When these concepts are applied to the domain of
architecture description the structure of the
microprocessor is defined implicitly in the class
diagram, the behavior of the architecture in the state
diagram and additional nonfunctional requirement are
defined in the deployment diagram in case of
UMLISAC language, that will be explained in later.
The lightweight extension will be used for the
generation of the software toolset.

3. UMLISAC

3.1 ISAC EXTENSIONS

This section introduces new extensions with regards
to our latest research (Masařík 2005) which includes
a design of the architecture description language
ISAC. ISAC was improved by the version of
language LISA (Hoffmann and Meyr 2002). This
language was used mainly for the simulation of the
microprocessor’s instructions. In the current research
we concentrate on modeling of the microprocessor
structure and its behavior. Without sufficient
structural information it is not possible to generate an
optimized silicon chip. The language ISAC doesn’t
contain sufficient structural information, for example
which function unit (FU) executes which instruction,
time constrains of FU, which are necessary by
scheduling of instructions etc. Without information
like this the compiler of Very Long Instruction Word
(vliw) (Srikant and Shankar 2003) microprocessor

can’t be created. Besides this, the ISAC doesn’t allow
for example sharing of the attributes among more
instructions. New structural extensions are going out
from the work of Cichon (Cichon 2004). His
language was successively used for design and
production of microprocessors and was successively
tested by electronic companies.

As other extension we suggest grouping of functional
units. Each functional unit belongs into one group.
The group prescribes common assembler and coding
syntax of instructions, which belong to the functional
units classified with the same group. This makes the
model simpler and more flexible, because there is
always a set of instructions with the same syntax and
coding. Base on the idea of instructions’ grouping it
is possible to perform some optimizations of the
instruction decoder, which lead to the reduction of
power consumption (Glökler and Meyr 2004).

3.2 UMLISAC STRUCTURAL MODEL

TEMPLATES OF BUILDING BLOCKS

This section presents structural model of UMLISAC.
The architecture consists of building blocks. One
building block is for example functional unit,
memory etc. The class of the class diagram should
represent one template of this building block. Created
instances of templates are used later in larger units,
e.g. core of microprocessor. The UML concept of
port and interfaces can be used successfully in
interconnecting among more building blocks. The
ports are mapped onto the input and output ports of
the physical entity of the architecture. The interface
and connectors are mapped onto the some type of
communication channel, for example bus.

Figure 1. Class of File register

The figure 1 represents the class of a file register. The
file register contains several registers (their number is
determined with the attribute of size) that are selected
using two address ports: adra and adrb. The first
mentioned port together with its required interface
(represented as half circle) requires an address which
is used for selecting of register those data are
provided through the provided interface (represented
as circle) of port a. The address adrb selects the
register, into which the new data is stored. The data is
received through the port b that has an interface
which requires data. Each type of interface provides
methods, which manipulate with data of a specific
data type, e.g. b3_t interface manipulates with
instance data type b3_t. Each data type has a specific

FR

adra

adrb

a

b

size:int

int_t

int_t

b3_t

b3_t

Download	English	Version:

https://daneshyari.com/en/article/721453

Download	Persian	Version:

https://daneshyari.com/article/721453

Daneshyari.com

https://daneshyari.com/en/article/721453
https://daneshyari.com/article/721453
https://daneshyari.com/

