Accepted Manuscript

Effect of vacuum thermal cycling on the compression and shear performance of composite sandwich structures containing pyramidal truss cores

Xiaodong Li, Jian Xiong, Li Ma, Linzhi Wu, Xianggiao Yan

PII: S0266-3538(17)31446-X

DOI: 10.1016/j.compscitech.2018.01.042

Reference: CSTE 7068

To appear in: Composites Science and Technology

Received Date: 14 June 2017

Revised Date: 24 January 2018 Accepted Date: 28 January 2018

Please cite this article as: Li X, Xiong J, Ma L, Wu L, Yan X, Effect of vacuum thermal cycling on the compression and shear performance of composite sandwich structures containing pyramidal truss cores, *Composites Science and Technology* (2018), doi: 10.1016/j.compscitech.2018.01.042.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Effect of vacuum thermal cycling on the compression and shear performance of

composite sandwich structures containing pyramidal truss cores

Xiaodong Li, Jian Xiong*, Li Ma, Linzhi Wu*, Xiangqiao Yan Center for Composite Materials, Harbin Institute of Technology,

Harbin 150001, PR China

Abstract

Composite pyramidal-truss core sandwich panels, in which the lattice core is strengthened by

reinforced frames between dispersive nodes, were manufactured via water-jet cutting and

interlocking assembly. The coefficients of thermal expansion and outgassing (mass loss) ratios of

the composite laminates were determined. Subsequently, the effect of vacuum thermal cycling on

the compression and shear performance of the composite sandwich panels with pyramidal-truss

cores was studied using theoretical and experimental methods. In particular, the out-of-plane

compression stiffness and strength, as well as the shear stiffness and strength of the structures

subjected to vacuum thermal cycling, were predicted using theoretical equations. The compression

and shear performance improved initially and then deteriorated with an increase in the vacuum

thermal cycling-time. The observed failure modes depended on the number of vacuum thermal

cycles. In addition, the catastrophic response of the composite sandwich panels with

pyramidal-truss cores was investigated, and their possible failure modes (including the crushing and

localized buckling of composite struts) were complemented with results of analytical modeling. The

truss cores collapsed mainly due to crushing and localized-buckling processes, caused by matrix

outgassing and debonding of the interface between the carbon fibers and epoxy resin, after

prolonged thermal cycling.

Keywords: A. Carbon fiber/epoxy composite; B. Composite sandwich panels with pyramidal truss

cores; C. Vacuum thermal cycling; D. Mechanical properties;

1. Introduction

There is a growing trend in the application of polymer matrix composites in various industrial

fields, mainly due to their low weights, high specific strengths, high specific stiffnesses, and low

* Corresponding author, Tel.:+86 451 86402739.

E-mail address: <u>jx@hit.edu.cn</u> (Professor Jian Xiong), <u>wlz@hit.edu.cn</u> (Professor Linzhi Wu).

1

Download English Version:

https://daneshyari.com/en/article/7214606

Download Persian Version:

https://daneshyari.com/article/7214606

<u>Daneshyari.com</u>