DESIGN OF THE SPIKING NEURON HAVING
LEARNING CAPABILITIES BASED ON FPGA
CIRCUITS!

Marek Kraft Andrzej Kasiniski Filip Ponulak

Institute of Control and Information Engineering, Poznan
University of Technology, Piotrowo 3A, 60-965 Poznar, Poland

Abstract: Hardware real-time implementations of Spiking Neuron Networks (SNN) are
wanted for multiple applications. Introduction of the supervised learning mechanism
for SNNs is a hot topic. A model of a single spiking neuron having that property
is proposed. This is based on LIF simplified model. A number of design issues has
been solved in order to enable the correct work of such a neuron during learning
phase. The proposed extensions and modifications are described and illustrated with

corresponding timing diagrams.

Keywords: Neural Networks, Learning Algorithms, VLSI Design, Biocybernetics

1. INTRODUCTION

Biological neurons process data encoded as spike
trains. Input spikes increase the membrane po-
tential. Once it reaches the threshold value, the
neuron itself generates a spike on its output. The
membrane potential is then reset to the value
below the resting potential, and the neuron en-
ters the refractory period. Then the membrane
potential slowly rises, until it reaches the resting
value again, which also terminates the refractory
period (Matthews, 1998). Although the above de-
scription is very simplified, it addresses all the
basic functionalities of a biological neuron. We
may therefore treat such a neuron as a discrete
event system, that processes data encoded as spike
trains. Depending on the level of biological plau-
sibility, there are a few spiking neuron models to
choose from for the implementation. Most widely
known are the Hodgkin-Huxley (HH) and Leaky
Integrate-and-Fire (LIF) models (Gerstner and
Kistler, 2002). The HH model, although offer-
ing a very detailed description of the neuron’s

1 The work was partially supported by the Pol-
ish State Committee for Scientific Research, project
1445/T11/2004/27.

dynamics, is difficult to implement in hardware
because of its functional complexity. An example
described in (Ros et al., 2003) uses as much as
7331 slices on Virtex-E FPGA for implementation
of only a pair of neurons. This makes the FPGA
implementation of larger-scale SNN based on such
neuron models very costly and complex. On the
other hand, the LTF neuron model is less complex,
while preserving fundamental phenomenological
properties of the biological neuron. This neuron
model is computationally relatively simple, easy
to implement in hardware and FPGA-resource-
efficient. A LIF neuron model can be referred to
a simple circuit consisting of resistors, capacitors,
switches and a comparator as it is shown in Fig.
1.

Synapse is represented as a RC filter circuit. Input
(voltage) spike passes through it and is converted
to a current pulse that charges the capacitor —
the capacitor’s voltage represents the membrane
potential. The membrane potential’s change is
proportional to the weight of the corresponding
input. When the potential reaches the threshold
value, an output spike is fired and the membrane
potential is reset to a negative (hyperpolarization)
value. A resistor in parallel with the capacitor

RESET
<T> glcuk
i, c=— { 0
Em uresel
1 1

Fig. 1. Simplified circuit of the LIF neuron model.

provides the membrane potential leakage func-
tionality and ensures membrane potential’s return
to the resting value after hyperpolarization.

Teaching in SNN can be accomplished via synap-
tic weights tuning. The synaptic weights in the
neuron model described in this paper are modified
according to ReSuMe learning rule, explained in
(Ponulak, 2005; Kasiriski and Ponulak, 2005).

ReSuMe is a supervised method for precise learn-
ing of spatio-temporal patterns of spikes in SNN.
This is still an open issue. According to Re-
SuMe learning rule, the synaptic weight of an
input is increased whenever a spike is transmitted
through this input to the neuron shortly before
the marked spike time (represented by a triggering
spike on the ’tchr’ input). The weight of this in-
put is decreased whenever an input spike appears
right before the neuron fires (generates the output
spike). For the sake of implementation simplicity,
the original ReSuMe concept has been slightly
modified. The amplitudes of weight changes in
our case are determined by the learning windows
defined over the difference between the pre- and
postsynaptic spike times (s'=tPst— P7¢) as well
as between the presynaptic and the desired spike
times (s? = t?—tP"¢). For the sake of simplicity
the learning windows W (s') and W (s?) modeled
in FPGA are implemented as linear functions of
s' and s?, respectively (instead of exponential
functions used originally in ReSuMe learning win-
dows)

CA-(I2E) T
W(S) — ¢ (T) or S€<07 >a (1)
0 otherwise,
where ¢ = —1 for s = s¢ and ¢ = +1 for

s= s% parameter A is a maximal amplitude and
T is a width (time-spread) of the learning win-
dow. Graphical illustration of the weight update
process in ReSuMe is given in Fig. 2.

o | NI
weightL —|—t

Fig. 2. Graphical presentation of the working
principle for ReSuMe learning.

2. SIMPLE IMPLEMENTATION OF LIF

In (Kraft and Kasinski, 2006), our first attempts
to model a spiking neuron in FPGA was pre-
sented. This implementation lacked the learning
functionality, however a ’tchr’ input was antici-
pated to enable the necessary extension in the
future. To demonstrate the viability of learning
according to ReSuMe in a SNN based on this
model was our next goal. The base model was
modified for this purpose.

The neuron’s inputs are no longer working simul-
taneously (as in (Kraft and Kasinski, 2006)). In
this model the inputs are looked-up sequentially,
and the effects of incoming, output and tchr spikes
are computed right after. Also, the membrane po-
tential’s decay is modeled with a function that ap-
proximates the exponential function. The model’s
work can be divided into some working cycles.
Because the inputs are looked-up sequentially, a
mechanism is needed to store the incoming spikes
for further processing. This is done with two reg-
isters - the input latch register and the working
register. Each one of them has the width (in bits)
equal to the number of inputs. The input latch
register is used to latch the incoming spikes on
all the inputs during the given working cycle.
On the end of the working cycle, this register’s
content is passed to the working register, and
the content of the input latch register is cleared.
All the input-related operations are performed on
the working register content. Such approach does
not cause any loss of incoming data, because the
operating frequency of the model is much higher
than the frequency at which the spikes are fed
to any of the inputs. The content of the working
register is looked-up bit by bit, one on each clock
cycle. When a logical ’1’ is met, the corresponding
weight value is added to the content of a register
representing the membrane potential value. When
a0’ is met, no action is taken. Clock cycle count
required for the whole operation is equal to the
number of inputs. During the next clock cycle,

Download English Version:

https://daneshyari.com/en/article/721468

Download Persian Version:

https://daneshyari.com/article/721468

Daneshyari.com

https://daneshyari.com/en/article/721468
https://daneshyari.com/article/721468
https://daneshyari.com

