## **Accepted Manuscript**

Hyperbranched polyether epoxy grafted graphene oxide for benzoxazine composites: Enhancement of mechanical and thermal properties

Xin Wang, Nan Li, Jinyan Wang, Guiyang Li, Lishuai Zong, Cheng Liu, Xigao Jian

PII: S0266-3538(17)32238-8

DOI: 10.1016/j.compscitech.2017.11.013

Reference: CSTE 6968

To appear in: Composites Science and Technology

Received Date: 11 September 2017
Revised Date: 9 November 2017
Accepted Date: 14 November 2017

Please cite this article as: Wang X, Li N, Wang J, Li G, Zong L, Liu C, Jian X, Hyperbranched polyether epoxy grafted graphene oxide for benzoxazine composites: Enhancement of mechanical and thermal properties, *Composites Science and Technology* (2017), doi: 10.1016/j.compscitech.2017.11.013.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



Hyperbranched polyether epoxy grafted graphene oxide for benzoxazine composites:

enhancement of mechanical and thermal properties

Xin Wang<sup>a,b</sup>, Nan Li<sup>a,b</sup>, Jinyan Wang<sup>a,b\*</sup>, Guiyang Li<sup>c\*</sup>, Lishuai Zong<sup>a,b</sup>, Cheng Liu<sup>a,b</sup>, Xigao Jian<sup>a,b\*</sup>

<sup>a</sup> State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China

<sup>b</sup> Department of Polymer Science & Materials, Dalian University of Technology, Dalian, 116024, China

<sup>c</sup> Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China

**ABSTRACT** 

Hyperbranched polyether epoxy (HBPEE) grafted graphene oxide (GO-HE) was designed to improve

the dispersion/exfoliation and interfacial interaction between graphene oxide and benzoxazine (BOZ). The

structures and morphologies of graphene oxide (GO) and GO-HE sheets were characterized by FT-IR, XRD,

XPS, Raman spectroscopy, TEM and AFM. BOZ composites containing GO and GO-HE were prepared

with different loadings and systemically investigated. GO and GO-HE produced 88% and 139%

improvements, respectively, in impact strength at 0.05 wt% loading. The three-point bending test indicated

that the BOZ/GO-HE composites exhibited higher flexural strength and modulus than the neat BOZ or

BOZ/GO composites. For BOZ composites containing 0.05 wt% GO-HE, the flexural strength increased by

14.4%, and the flexural modulus increased by 10.0% compared to that of neat BOZ. Furthermore, the Tg and

thermal stability of BOZ/GO-HE composites were significantly improved compared to those of neat BOZ

and BOZ/GO composites. These improvements can be ascribed to better dispersion of GO-HE and a

stronger interfacial interaction between GO-HE and the matrix, according to TEM and SEM analyses.

Keywords: Hyperbranched; epoxy; graphene oxide; benzoxazine

1. Introduction

Corresponding author Tel.: +86 +86-0411-84986019

E-mail address: wangjinyan@dlut.edu.cn (J. Y. Wang), guiyang lee@outlook.com (G. Y. Li), Jian4616@dlut.edu.cn (X. G. Jian)

1

## Download English Version:

## https://daneshyari.com/en/article/7214792

Download Persian Version:

https://daneshyari.com/article/7214792

Daneshyari.com