Accepted Manuscript

Clean and *in-situ* synthesis of copper-epoxy nanocomposite as a matrix for dielectric composites with improved dielectric performance

Gang Li, Shuhui Yu, Rong Sun, Daniel Lu

PII: S0266-3538(14)00447-3

DOI: http://dx.doi.org/10.1016/j.compscitech.2014.12.010

Reference: CSTE 6004

To appear in: Composites Science and Technology

Received Date: 6 May 2014

Revised Date: 13 November 2014 Accepted Date: 15 December 2014

Please cite this article as: Li, G., Yu, S., Sun, R., Lu, D., Clean and *in-situ* synthesis of copper-epoxy nanocomposite as a matrix for dielectric composites with improved dielectric performance, *Composites Science and Technology* (2014), doi: http://dx.doi.org/10.1016/j.compscitech.2014.12.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Clean and *in-situ* synthesis of copper-epoxy nanocomposite as a matrix for dielectric composites with improved dielectric performance

Gang Li^a, Shuhui Yu^{a*}, Rong Sun^{a*}, Daniel Lu^a

^a Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China

*Corresponding authors. Tel:+86-755-86392104. E-mail: sh.yu@siat.ac.cn, rong.sun@siat.ac.cn

Abstract: A Cu-epoxy nanocomposites has been developed by *in-situ* formation of metal nanoparticles within the epoxy matrix and utilized as a new matrix to enhance the dielectric properties of composites. By using an in-situ and clean thermal reduction method, monodisperse Cu nanoparticles with size around 100 nm were generated and uniformly dispersed in epoxy matrices. BaTiO₃ ceramic particles with high dielectric constant were incorporated into this Cu-epoxy matrix and the dielectric properties of as-prepared BT/Cu-epoxy composites were investigated. The result showed that the Cu-epoxy matrices effectively enhanced the dielectric constant while maintaining the low dielectric loss for the BT/Cu-epoxy composites as compared with the BT/epoxy composite. In addition, compared with the BT/Cu/epoxy nanocomposite obtained blending) techniques, the by *ex-situ* (simple in-situ BT/Cu-epoxy exhibited comparable dielectric constant while much lower dielectric loss. The improved dielectric performance of nanocomposites was attributed to the excellent dispersion of Cu nanoparticles as well as the strong interfacial interaction between Cu nanoparticles and epoxy matrix in the *in-situ* Cu-epoxy matrices.

Download English Version:

https://daneshyari.com/en/article/7215520

Download Persian Version:

https://daneshyari.com/article/7215520

<u>Daneshyari.com</u>