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a b s t r a c t

Under a wide range of conditions, an empirical addition of two time-dependent moduli of the phases in a
binary mixture gives similar results to an empirical addition of time-dependent terms corresponding to
the regular and inverse rules of mixtures. We give some examples of conditions necessary for the
difference to be non-negligible.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Composite rheological properties can be divided into three
groups: time-independent elastic moduli, large deformation and
fracture properties, and time/frequency dependence. Of these
groups, attempts to model time-independent elastic moduli of
composites, henceforth EC, have received the greatest attention,
and several models have been suggested. In the following we
present the pertinent models for binary composites, but they are
easily generalized to any number of phases. The most popular
model to calculate EC is probably the linear, or regular, rule of mix-
tures, also known as the upper bound:

EC;Upp ¼ E1£1 þ E2£2 ð1Þ

where E1 and E2 are the elastic moduli of two phases in a binary
composite with respective volume fractions £1 and £2. It is easily
generalized by summing over any arbitrary number of phases. The
rule of mixtures is an isostrain model that follows directly from par-
allel connection of the elements (mechanically, two or more
springs). Conversely, the inverse rule of mixtures, also known as
the lower bound, corresponds to a series connection of springs,
resulting in an equal stress, but different strains, on the elements.
It is given with:

EC;Low ¼ ð£1=E1 þ£2=E2Þ�1 ð2Þ

which again can be generalized in a straight-forward manner to any
number of phases. The regular and inverse rules of mixtures have

been used to predict other properties than E. For instance, the reg-
ular rule of mixtures, as we will refer to Eq. (1), successfully predict-
ed the thermal and electrical conductivity of fiber–polymer
composites [1], while it underestimated the change in thermal
conductivity and expansion of polymer composites on addition of
metal filler particles [2]. In application to mechanical properties,
Eqs. (1) and (2) are sometimes called the Takayanagi models, after
the pioneering application by Takayanagi et al. [3] in mechanical
characterization of polymer blends.

It is important to recognize that conceptually, the rules of mix-
tures refer to blends of continuous phases. More specifically, the
rules of mixtures are accurate for layered structures (laminates),
where Eqs. (1) and (2) should hold for Young’s moduli measured
in the directions of the layers and perpendicularly to them, respec-
tively. These rules have been used, however, to describe elastic
moduli of filled systems, where finite size (often spherical)
particles of a discontinuous phase act as a filler of a continuous
phase. One attempt to rationalize the use of Eqs. (1) and (2) for
filled composites is that in the case of rigid filler, the filler particles
are deformed less than the matrix, and both phases experience the
same stress, while when the matrix has a higher modulus than the
filler, the matrix experiences a higher stress than the filler and both
phases experience the same strain. Experimental evidence, howev-
er, has shown that Eqs. (1) and (2) fail to predict the elastic moduli
of filled composites [4–7], or that the ‘‘wrong’’ limit describes the
data, e.g., reports on aluminum [8] and silica-filled [9] polymers
where Eq. (2) should hold, but Eq. (1) was close to the experimen-
tal values. One notable exception in the reported literature was a
cork granulate-filled mortar, where the theoretically appropriate
Eq. (1) could reasonably describe the data [10]. For other
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composites, apart from sporadic reports on polymer blends [11–13],
experimental evidence has shown that Eqs. (1) and (2) usually fail to
predict EC, as in the case of many biphasic biopolymer gels [14–17],
where EC is intermediate between the two limits, and of composite
polymer–fiber [18,19] and polymer–clay composites [20], where EC

generally exceeds the upper bound (Eq. (1)). As already noted, one
notable exception where Eqs. (1) and (2) are expected to hold are
highly ordered macroscopically laminated composites. The ability
of Eqs. (1) and (2) to correctly predict the rheological moduli of an
aluminum-reinforced resin laminate has been demonstrated
experimentally [21]. It has been pointed out, however, that even
for laminates, the rules of mixtures cannot be extended to the mate-
rial strength at fracture (i.e., outside the linear regime) [22].

For completeness sake, we note that mixture models based
directly on inclusion of one phase in another include the isotropic
van der Poel model [6], based on homogeneous inclusion of filler
spheres, and tensoral homogenization schemes that take into
account anisotropy of the inclusions, such as the Eshelby inclusion
models [23].

As explained by Ross-Murphy [17], when the elastic modulus of
a composite falls between the upper and lower bounds of the rules
of mixtures, an engineering approach that may be applied is to cal-
culate the effective contribution of each limit to the composite. A
simple way to combine the series and parallel components to
recover the experimentally measured EC is to connect them in
parallel:

EC ¼ AUpp E1£1 þ E2£2ð Þ þ ALow £1=E1 þ£2=E2ð Þ�1 ð3Þ

where AUpp and ALow represent the contributions of the upper and
lower bounds (AUpp + ALow = 1).

2. Theory – empirical calculations of composite time-dependent
moduli

The simplest approximation of the time-dependent elastic
modulus of a composite EC(t) is probably addition of the individual
time-dependent moduli with appropriate coefficients:

ECðtÞ ¼ A1E1ðtÞ þ A2E2ðtÞ ð4Þ

where A1 and A2 are adjusted so that EC(0) is correctly predicted
(A1 + A2 = 1). Another empirical approach to approximate the time
dependence of the elastic time-dependent elastic modulus of a
composite, EC(t), can be trivially proposed as an extension of Eq. (3):

ECðtÞ ¼ AUppEC;UppðtÞ þ ALowEC;LowðtÞ ð5Þ

where ALow and AUpp are again adjusted so that EC(0) is correctly pre-
dicted. To find the appropriate terms to use in Eq. (5), we should derive
EC,Upp(t) and EC,Low(t). The former term can be obtained from the time
dependence of two viscoelastic elements connected in parallel:

EC;UppðtÞ ¼£1E1ðtÞ þ£2E2 ð6Þ

Eq. (6) is the time dependent regular rule of mixture.
For the time-dependent inverse rule of mixture, we can refer to

the general approach to calculate composite properties, which we
quote verbatim from Hashin [24] – ‘‘If the effective elastic
moduli. . . of a multiphase specimen are known as functions of
phase moduli and phase geometry, the effective transform-domain
moduli of the corresponding viscoelastic specimen are found by
replacement of the elastic-phase moduli by the transform-domain
moduli of the phases’’, where the transform-domain modulus
refers to the Laplace transform of the time-dependent viscoelastic
modulus. Accordingly, time-dependent properties of composites
can be calculated by calculating the Laplace transform of the elastic
limit solution of the composite, and obtaining the time-dependent
property from the inverse Laplace transform. This approach gives

immediately the time-dependent version of the inverse rule of
mixtures:

EC;LowðtÞ ¼ L�1
bE1ðsÞbE2ðsÞ

£2
bE1ðsÞ þ£1

bE2ðsÞ

 !
ð7Þ

where L�1 denotes the inverse Laplace transform, and bEðsÞ is the
Laplace transform of E(t):

f̂ ðsÞ ¼ Lðf ðtÞÞ ¼
Z 1

0
expð�stÞf ðtÞdt ð8Þ

We note that Eq. (7) can also be obtained by calculating the
composite creep modulus, JC(t), and then using the known relation
between J(t) and E(t) (see, for instance, [25]):

EðtÞ ¼ L�1 1

s2bJðsÞ
 !

ð9Þ

The composite creep modulus JC(t) of the series connected ele-
ments is given with:

JC;LowðtÞ ¼£1J1ðtÞ þ£2J2ðtÞ ð10Þ

which, by successive applications of Eq. (9) allows derivation of Eq.
(7).

Because calculation of the appropriate EC,Upp(t) and EC,Low(t)
terms to use in Eq. (5) requires application of the Laplace transform
and its inverse, Eq. (4) is easier to implement. In this short note we
demonstrate that under a wide range of conditions, Eq. (4) yields
similar results to Eq. (5), so that calculation of the latter offers no
advantage.

3. Results

We will now analyze a simple composite made of two phases,
each characterized by a single relaxation time:

E1ðtÞ ¼ e�t; E2ðtÞ ¼ Ke�at ð11Þ

For the composite in question, the volume fraction of phase 1
will be given with /. We can now investigate the difference
between Eqs. (4) and (5) for different values of /, K, a and t. One
more parameter is needed in this investigation that relates the
composite modulus EC to the upper and lower bounds,

Z ¼ ECð0Þ � EC;Lowð0Þ
EC;Uppð0Þ � EC;Lowð0Þ

ð12Þ

Understandably, comparing Eqs. (4) and (5) is only meaningful
for 0 < Z < 1, i.e., for values of the composite modulus EC between
the lower and upper bounds.

Fig. 1 shows t0, defined as the time at which the difference
between Eqs. (4) and (5) exceeds 10%, as a function of Z and K

Fig. 1. Time where Eqs. (4) and (5) differ by 10%, t0 , as a function of K and Z for a = 2
and / = 0.5. All t0 values > 3 were set to 3.
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