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a b s t r a c t

Scatter in composite mechanical properties is related to variabilities occurring at different scales. This
work attempts to analyse fibre strength variability numerically from micro to macro-scale taking into
account the size effect and its transition between scales. Two micro-mechanical models based on the
Weibull distribution were used within meso-scale finite element models of fibre bundles which were val-
idated against experimental results. These models were then implemented in a meso-scale model of an
AS4 carbon fibre plain weave/vinyl ester textile composite. Monte Carlo simulations showed that fibre
strength variability has a limited effect on the strength of the textile composite at the meso-scale and
introduces variability of less than 2% from the mean value. Macro-scale strength based on the predicted
meso-scale distribution was lower than the strength of the composite without variability by 1–4%
depending on the model. The presented multi-scale approach demonstrates that a wide fibre strength
distribution leads to a narrow distribution of composite strength and a shift to lower mean values.

� 2014 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Composite mechanical properties are highly scattered due to
the presence of variabilities [1], e.g. the tensile strength of unidi-
rectional (UD) composites can have coefficients of variation (CoV)
of up to 5% [2]. Defects induced by manufacturing (e.g. yarn wav-
iness or variable ply placement) or variations in constituent prop-
erties affect composite properties. According to the multi-scale
approach, uncertainties are divided into groups by length scale
[2]. Micro-scale variabilities include packing of fibres within yarns,
fibre waviness [3], voids between fibres and variability of constit-
uent properties; meso-scale variabilities include variation of yarn
path [4], size and shape of yarn cross-section, nesting and voids
between yarns. All of these cause variations in local moduli (and
therefore global stiffness), local strength (hence global strength)
and local component shape distortions (hence global geometry),
and it is not known a priori which of these are significant. Variabil-
ity of fibre strength is well-known to affect composite properties
and is well-studied [5]. However, no published studies explicitly
link the distribution of fibre strength to the strength distribution
of a woven composite.

Many analytical and numerical methods are based on the
multi-scale approach, whereby a complex structure is divided into
hierarchical sub-structures according to characteristic length. A
heterogeneous medium at one scale is replaced by a homogeneous

medium with the same properties at a higher scale. Homogenisa-
tion is usually based on the assumption of ideal periodicity at all
levels and subsequent representation of a composite as a periodic
unit cell. This approach has shown good results [6–8] despite con-
troversy regarding the variability for real structures.

At the micro-scale the strength of single fibres can have a CoV of
up to 20% and has a strong length dependence (strength can drop
by 10% when length is increased by a factor of 10) [9]. This depen-
dency and distribution are usually described by a two-parameter
Weibull distribution with a length scale effect [5]. However, addi-
tional parameters are often required for correct description of the
length effect [9].

The next step in multi-scale modelling is prediction of the
strength of an impregnated fibre bundle or UD composite at the
meso-scale. Several approaches can be considered. The Equal Load
Sharing (ELS) concept postulates that the load from a broken fibre
is equally distributed over all surviving fibres. This was used by
Daniels [10] to derive mean strength and its distribution for an
unimpregnated fibre bundle. A development of the model known
as chain-of-bundles was employed for prediction of the strength
of long fibre composites [11]. A drawback of this concept for an
impregnated bundle is that it does not account for the unequal
redistribution of stresses between fibres. GLS (Global Load Sharing)
models assume an unloading zone at each side of fibre breakage.
Theoretical predictions with various modifications are possible
for a regular fibre arrangement. It was shown that both ELS and
GLS models give close results once correct normalising constants
are chosen [5]. Strength predicted by both approaches can be
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approximated by a normal distribution [5]. Unlike the ELS, the
Local Load Sharing (LLS) concept assumes that the load from a bro-
ken fibre is distributed unequally to a number of neighbouring
fibres according to a sharing rule [12,13]. The number of neigh-
bouring fibres that take the load depends on the properties of
fibres and matrix and on the chosen theory. A number of analytical
LLS models [5,14] are able to predict final strength and its distribu-
tion. Computational LLS enables direct numerical simulations to be
performed. Okabe and Takeda [15] used a spring model in conjunc-
tion with a shear lag law to simulate the strength of UD compos-
ites. On the other hand, recent research [16] shows the
importance of realistic geometry (i.e. fibre packing) in predicting
the stress–strain state of a UD composite in the case of fibre break-
age. Finite element (FE) analysis was used to obtain the strength of
a bundle of randomly packed fibres whose strength followed a
Weibull distribution [17]. These models were able to capture the
process of damage propagation or a realistic stress–strain state of
the fibre array during fibre failure. However, an implementation
of these micro-scale models at the meso-scale is not feasible.

The next step is meso-scale modelling of textile composites
using properties obtained at the previous stage. Ismar et al. [18]
modelled an SiC/SiC woven composite with variability of yarn
strength using FE analysis and a Monte Carlo method, varying
strength in every element following a Weibull distribution and
implementing a size effect. This showed the significant influence
(about 10% reduction when a Weibull shape parameter was
halved) of variability in impregnated bundle strength on tensile
strength of woven composites. However, this study did not report
standard deviation of final strength for a given distribution and
predictions were not based on the distribution of single fibre
strength.

This paper applies a multi-scale modelling approach for a textile
composite with variability in fibre properties. Fibre bundle
strength models were chosen and validated against experimental
data for UD composites based on single fibre strength distributions.
The models ensured correct transition between scales taking into
account the size effect which is critical for meso-scale FE model-
ling. Using the fibre bundle strength model, stochastic FE simula-
tions were performed to determine the distribution of composite
mechanical properties.

2. Variability models

2.1. Strength model of single fibre

The Weibull distribution is often used for prediction of single
fibre strength [5,19]. Taking into account the length effect, a fibre
of length L under tensile stress r has a cumulative failure probabil-
ity Pf given by

Pf ¼ 1� expð�ðL=L0Þðr=r0ÞqÞ ð1Þ

where r0 is the Weibull scale parameter, q the shape parameter and
L0 the gauge length.

However, it was found that this approach tended to overesti-
mate the strength of some types of fibres of shorter length
[9,15,20], and the experimental fibre strength distribution at dif-
ferent length scales is better described by [9]

Pf ¼ 1� exp �ðL=L0Þaðr=r0Þq
� �

ð2Þ

where a is an additional parameter satisfying 0 < a 6 1.
This empirical relationship was related to fibre-to-fibre varia-

tion of the scale parameter [9]. This was explored by Beyerlein
and Phoenix [21] for a bundle consisting of four fibres. This
approach, termed Weibull of Weibulls, was extended further by

applying it to all fibres in the composite [22]. Then the cumulative
probability of fibre failure, Pf, under loading stress r is

Pf ¼ 1� exp �ðL=L0Þðr=ri
0Þ

q0
� �

ð3Þ

where L is fibre length, L0 is the reference gauge length, q0 = q/a is a
Weibull shape parameter and the Weibull scale parameter ri

0 has a
cumulative distribution Pr0

Pr0 ¼ 1� exp �ðri
0=�r0Þ

m
� �

ð4Þ

where m is a Weibull shape parameter and �r0 is a scale parameter.
Curtin showed that Eqs. (3) and (4) give a strength distribution
close to that from Eq. (2), but with parameters measured directly
from single fibre tests. Eqs. (3) and (4) are used later to describe dis-
tribution of fibre strength in fibre bundles.

2.2. Strength model of impregnated fibre bundle

Analysis of failed UD composites shows that fibre damage tends
to cluster before final failure [15]. Here it is assumed that in a full-
scale FE model these clusters can be modelled as small bundles or
domains (finite elements) whose strength is calculated using a the-
oretical model. Three approaches were employed for comparison:
the ELS concept using direct calculations as described below, the
ELS concept in its normal distribution approximation [5,10] and
the GLS concept in its approximation as a Gaussian process
[5,23,24]. However, the entire approach effectively implements
an LLS model due to stress redistributions in an FE model which
follow element failure.

To find the strength of an individual element a bundle of N
fibres is considered. For the ELS approach the stress Si prior to
i-th fibre failure is [10]:

Si ¼ Vf

N
ðN � iþ 1ÞSi

f þ ð1� Vf ÞS0m; ð5Þ

where Vf is fibre volume fraction, S0m ¼ EmSi
f =Ef is stress in the

matrix at the fibre failure strain and Si
f :, i = 1 . . .N are the strengths

of individual fibres, calculated with Eqs. (3) and (4). The second
term in Eq. (5) accounts for matrix stress contribution.

Eq. (5) defines a series of stresses corresponding to progressive
failure of fibres in the bundle. The ultimate bundle strength is then
defined as max(Si). It was shown by Daniels [10] that the strength
of an infinitely large bundle tends to a normal distribution.

A more realistic GLS concept was also employed as an alterna-
tive method for determining the bundle (finite element) strength.
It assumes that load is redistributed through shear after a single
fibre break. The strength distribution along the length of the bun-
dle predicted by this concept was shown to be asymptotically close
to a Gaussian process which mean, standard deviation and covari-
ance function can be found in [24]. The comparison with the ELS
model was shown to be possible when the correct characteristic
strength is used for the GLS model [5].

It should be noted that, in all the models, fibres within the
impregnated bundle are assumed to be perfectly aligned with the
finite element edges and therefore the size of the element defines
its strength through the length and size of the fibre bundle.

2.3. Damage model

A continuum damage mechanics (CDM) approach was used for
the impregnated bundle [25]. This suggests linear behaviour until
damage initiation, followed by gradual degradation of elastic prop-
erties. Five failure modes were considered: longitudinal tension/
compression, transverse tension/compression and transverse
shear. Damage initiates when one of the damage variables Di
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