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a b s t r a c t

A model for toughening from spherical particles is extended to cylindrical rods and fibres. The equations
describing the plastic cavitation are of similar form to those of spheres. The results are used to analyse the
toughening of an epoxy resin using carbon nano tubes and ZnO nano-rods in a thermoplastic. Both quasi-
static fracture and fatigue are included. The effects of fibre size distribution and agglomeration are also
discussed. It is proposed that the surface energy at debonding is some fraction of the matrix toughness
which is governed by the particle and plastic zone sizes. Rod-like nano particles appear to be more effec-
tive as tougheners although agglomeration is the major problem.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

It has become common place for polymers to be modified with
micron or nano-scale particles for the enhancement of mechanical
properties. The present paper considers the effects of toughening
with particles of various sizes and aspect ratios. A model is devel-
oped for toughening with cyclindrical rods and fibres and is an
extension of an earlier model for toughening with spherical parti-
cles [1]. In this introduction we summarise the approach previ-
ously taken for the analysis of toughening with spheres, and then
in the next section extend this to toughening with cylindrical rods
and fibres. This approach allows for a clear comparison of the
sphere versus rod analyses. Section 3 considers the effects of a dis-
tribution of particle sizes and agglomeration. In Section 4 the anal-
ysis is applied to a number of materials where data has appeared in
the literature and results are then discussed.

An earlier paper [1] described the toughening mechanism of
plastic void growth from adhered spherical particles. The mecha-
nism is of interest since it was shown that the behaviour was dif-
ferent for nano-scale particles (radius 10 nm) when compared with
the microscale (radius 10 lm). The analysis modelled a single
spherical particle of radius ro subjected to a hydrostatic stress field
and showed that the particles debond when the interfacial stress,
rc, is given by:
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where Ga is the interfacial energy, E and v are Young’s modulus and
Poisson’s ratio of the matrix respectively. For a matrix with a yield
stress of rY this dedonding gives a plastic energy, per unit area of
the particle surface, of:
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and Gp = 0 for xs = 1. The total energy dissipated in debonding a sin-
gle particle is thus:
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The analysis proceeds by assuming a uniform array of particles
so that each particle is at the centre of a cube of scale length, l,
given by the volume fraction, / such that:

/ ¼ 4pr3
o

3l3 ð4Þ

The number of such cells, N, above and below the fracture sur-
face is given by the size of the zone, c, in which the stress is greater
than rc, where c is given by:

c ¼ 1
2p
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and where Gm is the matrix toughness. Thus:

N ¼ 2c
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and the increase in toughness due to cavitation is given by:
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(A loss of area term may also be included as in [1] but it is gen-
erally small). Thus the toughness increase is proportional to / and
is determined by xs > 1. For m = 1/3, the stress ratio and toughening
factors for spherical particles are given by:
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and from Eq. (1) the controlling factor is Ga which is given by:
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Fig. 1 shows EGa
r2

Y ro
and xs ¼ rc

rY
as functions of Xs. An example is

given in [1] for data measured using silica particles with ro = 10 nm
at U = 0.1 and gives Xs = 30 so that EGa

r2
Y ro
¼ 18 and xs = 7.3 which

gives Ga = 0.3 J/m2.
The lower limit of this analysis is given when N = 1. From Eq. (4)

and substitutions from Eqs. (1) and (5b) it can be shown that a
lower limit to volume fraction, to give N = 1, is given by:
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For N = 1 and m = 1/3,

DGc

Gm
¼ 16p

3
3

4p

� �2=3 Ga

Gm

� �
exs�1

xs
� 1

4

� �
¼ /1=3

c Xs/
2=3

For / < /c the toughness has a /
2
3 dependence and a parameter Y

may be determined experimentally, i.e.,

Ys ¼
1

/2=3
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For the example discussed above, Gm = 277 J/m2 and hence
/c = 4 � 10�6, i.e. very small so the N > 1 solution is appropriate.
To analyse toughening in fatigue, the matrix value of G, i.e. Gm,

Nomenclature

A1, B1 Lamé constants
c radius of process zone
E Young’s modulus of the matrix
fn proportion of particles with discrete values of ro across a

distribution
Ga interfacial energy between particle and matrix
Gc toughness of the composite
Gm toughness of the matrix
Gp plastic energy dissipated (per unit area of particle deb-

onded)
Gth threshold value of G in fatigue
k parameter used in the model to relate Ga to matrix

toughness and particle size
l length of side of representative volume element
lr length of a rod-like particle
lr1 length of a rod-like particle with infinite aspect ratio
N number of active cells in the particle debonding model
N1 value of N when infinite aspect ratio particles are con-

sidered
n parameter used in the model to relate Ga to matrix

toughness and particle size
rm radius of plane strain plastic zone
ro radius of the toughening particle (sphere or rod-like)
�ro median value of particle radius in a distribution
r1 radius of assumed cylinder of matrix surrounding the

rod-like particle
S aspect ratio, (lr/2ro), =1 for (spheres); =3 (the short rod-

like particles considered here); ?1 (carbon nano-
tubes)

u radial displacement
xs critical stress ratio factor for spherical particles
xr critical stress ratio factor for rod-like particles
X toughening factor
Xs toughening factor for spherical particles
Xr1 toughening factor for rod-like particles (infinite aspect

ratio assumed)
X3 toughening factor for rod-like particles (aspect ratio,

S = 3)
Ys toughening factor for spherical particles when N = 1
Y1 toughening factor when N1 = 1 is assumed
Yth toughening factor for fatigue threshold when N1 = 1 is

assumed
eh,r,z strain in the hoop, radial and axial directions
/ volume fraction of particles in composite
/c lower limit to volume fraction to give N = 1
/1 volume fraction when infinite aspect ratio rods are con-

sidered
/rf volume fraction for finite, flat-ended rods
/c1 value of /c for the case of infinite aspect ratio rods
�/ volume fraction, below which corresponds to an infinite

aspect ratio
rc critical stress on particle–matrix interface for debond-

ing
rh hydrostatic stress in the matrix surrounding the particle
rY yield stress of the matrix
rh,r,z stress in hoop, radial and axial directions
n ratio (ro/r1)2

m Poisson’s ratio of the matrix
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Fig. 1. Toughening factor Xs and critical stress ratio xs (ordinate) for spherical
particles in a matrix of Poisson’s ratio m = 1/3 (the dotted lines are for the case of
Xs � 30 referred to in the text).
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