Accepted Manuscript

Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes

Michaela Salajkova, Luca Valentini, Qi Zhou, Lars Berglund

PII: S0266-3538(13)00256-X

DOI: http://dx.doi.org/10.1016/j.compscitech.2013.06.014

Reference: CSTE 5529

To appear in: Composites Science and Technology

Received Date: 8 April 2013 Revised Date: 7 June 2013 Accepted Date: 15 June 2013

Please cite this article as: Salajkova, M., Valentini, L., Zhou, Q., Berglund, L., Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes, *Composites Science and Technology* (2013), doi: http://dx.doi.org/10.1016/j.compscitech.2013.06.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes

Michaela Salajkova, a,b Luca Valentini, Qi Zhou A,b,d and Lars Berglund A,b,d

^aDepartment of Fibre and Polymer Technology, Royal Institute of Technology, SE-100 44

Stockholm, Sweden

^bWallenberg Wood Science Center, Royal Institute of Technology, SE-100 44 Stockholm,
Sweden

^cCivil and Environmental Engineering Department, University of Perugia, 051 00 Terni, Italy

^dSchool of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden

* Corresponding author. Tel: +468 790 81 18, Fax: +468 790 61 66

Email address: blund@kth.se

Wallenberg Wood Science Center, Teknikringen 56, SE-100 44, Stockholm, Sweden

ABSTRACT. Carbon nanotube (CNT) nanocomposites based on CNT in a polymer matrix typically have low strain to failure in tensile loading. Furthermore, mixing of more than a few

Download English Version:

https://daneshyari.com/en/article/7215881

Download Persian Version:

https://daneshyari.com/article/7215881

<u>Daneshyari.com</u>