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This paper introduces a numerical method able to deal with a general bi-fluid model 
integrating capillary actions. The method relies first on the precise computation of the 
surface tension force. Considering a mathematical transformation of the surface tension 
virtual work, the regularity required for the solution on the evolving curved interface 
is weakened, and the mechanical equilibrium of the triple line can be enforced as a 
natural condition. Consequently, contact angles of the liquid over the solid phase result 
naturally from this equilibrium. Second, for an exhaustive representation of capillary 
actions, pressure jumps across the interface must be accounted for. A pressure enrichment 
strategy is used to properly compute the discontinuities in both pressure and gradient 
fields. The resulting method is shown to predict nicely static contact angles for some test 
cases, and is evaluated on complex 3D cases.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Capillary-driven flows of matter are involved in a wide range of industrial and natural phenomena [1] [2] [3]. Capillary 
effects can be depicted as a force per unit length applied at an interface between two phases and originate from the 
unbalanced forces at the molecular scale on either sides of this interface [4]. Globally [5] [6] [7], three phases can be 
involved in capillarity: solid, liquid, and vapour phases. Due to the complexity in tracking experimentally capillary effects, 
a large number of numerical studies have been proposed to investigate industrial cases of capillary flows in porous and 
fibrous media [8] [9] [10] [11].

The present study focuses on a strategy to compute capillary effects within the context of the simulation of some man-
ufacturing processes for high-performance composites. More especially, Liquid Resin Infusion (LRI) processes are targeted, 
they consist in the infiltration of a low-viscosity resin into dry fibrous preforms under a low-pressure gradient due to vac-
uum pulling only (<1 bar) [12] [13]. Some previous works have settled a numerical strategy to model this type of process at 
the macroscopic scale of the equivalent homogeneous media, i.e. where the fibrous preforms are not fully described across 
the scales [12] [14] [15]. The robustness of this approach has been demonstrated industrially [15], but some recent experi-
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mental measurements from Pucci et al. [16] have shown that capillary effects may rule the LRI processes to a great extent. 
Capillary pressures identified in [16] for industrial resin–fibre couples were measured up to 0.3 bar, that is to say one third 
of the highest pressure differential that can be employed in out-of-autoclave processes such as LRI. Besides, it is known that 
voids appearing during the infusion process are controlled by the competition between both capillary action and viscous 
dissipation at the microscopic scale [17]. Accounting for this competition at the scale of the equivalent medium would rely 
on identified laws and parameters that would hide the complexity of the void creation, migration, and combination [18]. In 
an attempt to grasp these very local phenomena, the present work aims at setting a robust numerical framework modelling 
of the capillary effects at the scale of the fibers.

Overall, modelling capillarity faces two main challenges related to the moving and changing liquid–vapour interface: the 
surface tension combines with the flow front curvature to yield the capillary driving force, and physical discontinuities must 
be captured across this interface. In the corresponding strongly non-linear problem, the fluid front has to accommodate to 
verify at the same time the fluid bulk and interfacial equilibria, plus minimise the local surface tension–curvature energy. 
A linearisation is then mandatory, but still, computing properly the corresponding driving force and discontinuities on the 
moving curved liquid–vapour interface is a considerable task that can be taken up only by combining stable numerical 
techniques.

First, regarding the fluid front description, a level-set method [19] is used here to follow and capture this interface. 
It has the advantage to carry a direct representation of the interface. Then, normal vectors and curvatures are explicitly 
known without any further reconstruction step, unlike the Volume Of Fluid (VOF) technique [20] for instance. Also, this 
method takes into account topological changes naturally; this is a crucial feature for the study of voids merge and split. 
When computing the surface tension driving force, a mathematical transformation weakens the regularity required on the 
interface, since the curvature no longer appears in the problem. Furthermore, the mechanical equilibrium at the junction 
between solid, liquid, and vapour phases, is subsequently enforced as a natural condition [21], without explicitly considering 
the contact angle of the liquid over the solid phase. Not prescribing the contact angle is a first step toward a dynamic contact 
angle representation and permits to rely only on intrinsic properties of the three phases.

The second numerical difficulty comes from the discontinuity of the stress tensor across the fluid–vapour interface. Since 
viscosities of both liquid and vapour are different, the normal derivatives of the velocity are also discontinuous across the 
interface [22], and so is the pressure according to the fluid momentum balance. Also, for the same reason, the density 
contrast between both fluids will induce a pressure gradient jump. Both jumps have to be properly computed since, as 
shown in the literature [23], errors in the pressure field lead to spurious velocities and then to a degradation of the interface 
[24] [25]. Various techniques have been proposed in the literature to account for these jumps [26] [27] [28]. Following [29]
and Coppola-Owen et al. [30], E-FEM are used here, which consists in enlarging the space of solution for the pressure but 
with no change in the size of the algebraic system to be solved.

The last technical issue in capillary modelling is the coupling between the flow front motion and the flow mechanical 
equilibrium, i.e. the level-set problem and the Stokes equation for the fluid. A fully decoupled staggered strategy is proposed 
for this.

The paper is organised as follows. In Section 2, the mathematical formulation is introduced for the Stokes equations 
and the corresponding boundary conditions. Section 3 is devoted to the associated weak formulation that is discretised in 
space and time in Section 4. Section 5 sets the level-set method and the reparametrisation technique used. The staggered 
coupling approach is described in Section 6. Finally, some simulations of capillary rise of liquid compared with analytic and 
semi-analytic solutions are presented in Section 7. Based on the observed numerical results some conclusions are finally 
drawn in Section 8.

2. Mathematical formulation

Let � ⊂ R
3 be a bounded domain subdivided into two sub-regions denoted �L(t) for the liquid and �V(t) for the 

vapour phase with � = �V(t) ∪ �L(t), as shown in Fig. 1. The interface between these two fluids is denoted �LV(t) =
∂�V(t) ∩ ∂�L(t), also depending on time. Through the paper, the case of a liquid meniscus forming against a rigid wall, 
as depicted in Fig. 1, will be used as a baseline for illustrating the method and concepts. In this configuration, the rigid 
wall (Solid) is defined as a boundary of the computational domain. This boundary can be subdivided into two interfaces 
�SL = �L ∩ Solid and �SV = �V ∩ Solid. Each of the three interfaces �i , for i ∈ {SL,SV, LV}, has a normal ni and two tangents 
t1

i and t2
i , along with one in-going tangent T i normal to its contour (see Fig. 1). Finally, the line at the junction between 

the three phases (liquid, solid, vapour) is called the triple line and is denoted L(t) = �SL ∩ �SV ∩ �LV.

2.1. Governing equations

In the present work, every fluid is considered as Newtonian, and the corresponding stress tensor is then given by

σ = −p I + 2με̇(v), with ε̇(v) = 1

2

(∇v + ∇vᵀ)
(1)

with v the velocity, p the pressure and μ the constant viscosity of the fluid (i.e. μ = μL , ∀x ∈ �L and μ = μV , ∀x ∈ �V). 
Assuming that the fluids are incompressible, both momentum balance and mass conservation equations yield the Stokes 
equations:



Download English Version:

https://daneshyari.com/en/article/7216078

Download Persian Version:

https://daneshyari.com/article/7216078

Daneshyari.com

https://daneshyari.com/en/article/7216078
https://daneshyari.com/article/7216078
https://daneshyari.com

