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Various sources of uncertainty can arise in metal forming processes, or their numerical 
simulation, or both, such as uncertainty in material behavior, process conditions, and 
geometry. Methods from the domain of uncertainty quantification can help assess the 
impact of such uncertainty on metal forming processes and their numerical simulation, and 
they can thus help improve robustness and predictive accuracy. In this paper, we compare 
stochastic methods and interval methods, two classes of methods receiving broad attention 
in the domain of uncertainty quantification, through their application to a numerical 
simulation of a sheet metal forming process.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Various sources of uncertainty can arise in metal forming processes, or their numerical simulation, or both, such as un-
certainty in material behavior, uncertainty in process conditions including friction properties, and uncertainty in geometrical 
properties. Here, uncertainty can refer to manufacturing variability in material behavior, process conditions, and geometry, 
or it can refer to the imperfect representation or incomplete knowledge of these properties in a numerical simulation. The 
presence of such sources of uncertainty can raise the challenge of taking into account such uncertainty in the design, the 
control, the optimization, the maintenance, and so forth of metal forming processes, as well as in their numerical simulation.

In the domains of uncertainty quantification and computational mechanics, new methods for the analysis and manage-
ment of uncertainty are under development, see, for instance, [1–12]. These developments are very rich, and two classes of 
new methods receiving broad attention are the stochastic methods and the interval methods. On the one hand, stochastic 
methods represent uncertainty by means of probability distributions, and they rely on the probability theory to determine 
the impact of sources of uncertainty on quantities that depend on them. On the other hand, interval methods represent 
uncertainty by means of intervals, and they rely on interval arithmetic, or optimization theory, or both to determine the 
impact of sources of uncertainty on quantities that depend on them. Around these core tasks of representing uncertainty 
and determining the impact of sources of uncertainty on quantities that depend on them, research in uncertainty quan-
tification and computational mechanics builds new methods for accounting for uncertainty in design, control, optimization, 
maintenance, and many other engineering tasks. These new methods from the domains of uncertainty quantification and 
computational mechanics can be usefully applied to the analysis and management of uncertainty in metal forming processes 
and their numerical simulation.
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In this paper, we compare the stochastic and interval methods through their application to a numerical simulation of 
a sheet metal forming process. Our intent is to provide some insight into how stochastic and interval methods handle the 
core tasks of representing uncertainty and determining the impact of sources of uncertainty on quantities that depend 
on them. The integration of these core tasks in new methods for design, control, optimization, maintenance, and other 
engineering tasks under uncertainty is beyond the scope of this paper. Further, we note that whereas we had already 
applied in two previous papers [9,13] stochastic methods to a metal forming problem with uncertain material properties, 
we apply here stochastic and interval methods to a metal forming problem involving not only uncertain material properties 
but also uncertain friction and geometrical characteristics.

This paper is organized as follows. First, in Secs. 2 and 3, we provide concise overviews of the stochastic and interval 
methods. Then, in Sec. 4, the core of this paper, we compare them in the context of the quantification of uncertainty in a 
numerical simulation of a sheet metal forming process.

2. Stochastic methods

Let us assume that we consider a mechanical problem that lends itself well to a representation in terms of a trans-
formation of input parameters into a quantity of interest. Specifically, let us assume that there are a finite number, 
say d, of vector-valued input parameters, which we denote by x1, . . . , xd , with x1 = (x1

1, . . . , x
1
s1

) of dimension s1 up to 
xd = (xd

1, . . . , x
d
sd

) of dimension sd , that are transformed through a function, which we denote by f , into a scalar quantity of 
interest, which we denote by y:

y = f (x1, . . . , xd) (1)

please note that in these expressions, the superscripts serve to index the vector-valued input parameters. For example, in 
a mechanical problem involving a metal forming process, one of the vector-valued input parameters, say x1, could collect 
material properties, another vector-valued input parameter, say x2, could collect friction properties, another vector-valued 
input parameter, say x3, could collect geometrical properties, and so forth; the quantity of interest y could represent a 
property of the deformed piece such as a magnitude of a residual stress or a displacement component at a certain location; 
and the function f could represent how this quantity of interest depends on these vector-valued input parameters in this 
metal forming process or a numerical simulation of it.

Let us assume that the vector-valued input parameters are uncertain. Within this context, we discuss below some of the 
key concepts of how stochastic methods allow the uncertainty in the vector-valued input parameters to be represented, its 
impact on the quantity of interest to be determined, and a sensitivity analysis to be carried out.

We note that this section provides only a concise overview; we refer the reader to [2,4,5,7–12] and references therein 
for more comprehensive texts. Further, we note that although we consider for the sake of conciseness a context involving 
uncertain scalars and vectors, stochastic methods are not limited to uncertain scalars and vectors and can readily deal with 
uncertain matrices, fields, functions, operators, and other quantities.

2.1. Characterization of uncertainty

Stochastic methods account for sources of uncertainty in a mechanical problem by representing them by using prob-
ability distributions. As such, the application of stochastic methods typically begins with identifying suitable probability 
distributions for these sources of uncertainty from available information, a task called the characterization of uncertainty.

In the present context, stochastic methods entail the representation of the uncertain vector-valued input parameters by 
(vector-valued) random variables, which we denote by X1 = (X1
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sd
); please note that it is 

customary in the probability theory [14] to denote random variables by using uppercase letters. We denote their probability 
distributions by πX1 = π(X1
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) up to πXd = π
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)
, respectively:

X1 ∼ πX1 , . . . , Xd ∼ πXd (2)

here, with 1 ≤ j ≤ d, we denote by X j ∼ πX j that X j is distributed according to πX j , by which the probability theory under-
stands that πX j is a function that assigns to any meaningful subset B j of Rs j the probability πX j (B j) that the value taken 
by X j is in B j . From the mechanical point of view, if the uncertainty refers to manufacturing variability, the probability 
distributions πX1 , . . . , πXd can be interpreted as describing frequencies of occurrence of values of the uncertain vector-
valued input parameters; and if the uncertainty refers to an imperfect representation or incomplete knowledge, they can be 
interpreted as describing plausabilities of values of the uncertain vector-valued input parameters.

We assume that the partitioning of the input uncertainty into the uncertain vector-valued input parameters is such that 
these uncertain vector-valued input parameters are represented appropriately by mutually statistically independent random 
variables, by which the probability theory understands that the joint probability distribution π(X1,...,Xd) of X1, . . . , Xd is the 
product of the probability distributions πX1 , . . . , πXd :

π(X1,...,Xd) = πX1 × . . . × πXd (3)
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