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The initial plastic anisotropy parameters are conventionally determined from the Lankford 
strain ratios defined by rψ = ε

pψ
22

ε
pψ
33

(ψ being the direction of the loading path). They are 
usually considered as constant parameters that are determined at a given value of the 
plastic strain far from the early stage of the plastic flow (i.e. equivalent plastic strain 
of εp

eq = 0.2%) and typically at an equivalent plastic strain in between 20% and 50% of 
plastic strain failure (or material ductility). What prompts to question about the relevance 
of this determination, considering that this ratio does not remain constant, but changes 
with plastic strain. Accordingly, when the nonlinear evolution of the kinematic hardening 
is accounted for, the Lankford strain ratios are expected to evolve significantly during the 
plastic flow.
In this work, a parametric study is performed to investigate the effect of the nonlinear 
kinematic hardening evolution of the Lankford strain ratios for different values of the 
kinematic hardening parameters. For the sake of clarity, this nonlinear kinematic hardening 
is formulated together with nonlinear isotropic hardening in the framework of anisotropic 
Hill-type (1948) yield criterion. Extension to other quadratic or non-quadratic yield criteria 
can be made without any difficulty. This parametric study is completed by studying the 
effect of these parameters on simulations of sheet metal forming by large plastic strains.

© 2018 Published by Elsevier Masson SAS on behalf of Académie des sciences. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Notation

– RFF: Rotating frame formulation,
– TIP: Thermodynamics of the irreversible processes
– First-rank tensor or vector: �x, xi ,
– Second-rank tensor: x, xij ,
– Fourth-rank tensor: x, xijkl ,
– Second-rank identity tensor: 1, δi j ,
– Fourth-rank symmetric identity tensor: I , Ii jkl = 1

2 (δikδ jl + δilδ jk),
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– Fourth-rank symmetric deviatoric identity tensor: ID, ID
i jkl = 1

2 (δikδ jl + δilδ jk) − 1
3 δi jδkl ,

– Transpose of second-rank tensor: xᵀ , (xij)
ᵀ = x ji ,

– Symmetric and skew-symmetric parts of second-rank tensor: x = [x]S + [x]A

[x]S = 1

2

(
x + xᵀ)

, [x]A = 1

2

(
x − xᵀ)

,

– Hydrostatic part of second-rank tensor: [x]H = 1
3 tr(x)1,

– Deviatoric part of second-rank tensor: [x]D = x − [x]H,
– Inverse of second-rank tensor: x−1, x−1

i j ,

– Inverse of fourth-rank tensor: x−1, x−1
i jkl ,

– Time derivative of second-rank tensor: ẋ, ẋi j ,
– Simple contraction of two second-rank tensors: zi j = xik ykj ,
– Double contraction of two second-rank tensors: z = x : y = xij y ji ,
– Tensorial product of two second-rank tensors: z = x ⊗ y, zi jkl = xij ykl ,
– The trace of the second-rank tensor (1st invariant): xI = tr(x) = xkk ,
– Second invariant of the second-rank tensor: xI I = [tr2(x) − tr(x2)]/2,
– Determinant of the second-rank tensor (3rd invariant): det(x),
– Rotated second-rank tensor (with rigid body rotation Q ): x̄ = Q ᵀ.x.Q , x̄i j = Q ki Q lj xkl ,
– Rotated fourth-rank tensor between isocline and current configurations: x̄ = (Q ᵀ ⊗ Q ) : x : (Q ⊗ Q ᵀ), or x̄i jkl =

Q ri Q sj Q pk Q qlxi jkl .

1. Introduction

Lightweight structural components, needed for many industrial sectors as automotive and aerospace industries, require 
advanced High Strength Materials (AHSM) such as steels and aluminum alloys. However, because of their low ductility 
at room temperature, the forming of such types of materials by deep drawing presents several difficulties. Among these 
difficulties, we find springback, which appears at the end of the deep drawing operation, when the stamping tools are 
removed. Considerable efforts have been made to predict numerically, with the best accuracy, the springback in sheet metal 
forming. For a better numerical prediction of the springback, several factors have been studied. Among them, the most 
important one is the development of constitutive equations to predict the plastic flow under various loading paths as 
can be found in [1–11]. The mechanical responses of the high-strength materials under complex loading paths as reverse 
loading–unloading–reloading must be considered for accurate springback simulations involving accurate modeling of the 
plastic flow and the related various types of work hardening as well as initial and induced anisotropies. In fact, the metal 
sheets subjected to deep drawing locally exhibit complex loading paths due mainly to bending–unbending. Therefore, the 
behavior of the material under loading–unloading–reverse loading must be accurately predicted, in addition to the material 
behavior under usual monotonic simple (1D) loading paths. Because these strain properties cannot be captured by traditional 
isotropic hardening models, the current tendency is to consider kinematic hardening models. A better description of the 
stress–strain responses under reverse loading was then proposed by Armstrong and Frederick [12], introducing a non-linear 
description of the kinematic hardening with the addition of a dynamic recovery terms. This model has been improved 
further by Chaboche [13] to describe the ratcheting effects during cyclic loading. Teodosiu et al. [14,15] used a kinematic 
hardening based on a tensor description of dislocation structures growing under the change of loading paths or change of 
strain path to better reflect the microscopic changes that occur during plastic flow.

Various kinematic hardening models have been implemented to be used in the FEM simulations of sheet metal forming 
in order to predict as accurately as possible the formability and springback phenomena [3,4,7–11,16–22]. Other approaches 
have been developed based on classical nonlinear kinematic hardening combined with the distortion of the subsequent 
yield surfaces [23–30]. More recently, without using the concept of kinematic hardening, a uniform yield surface based on 
an anisotropic hardening (HAH) was proposed by Barlat et al. [1,2].

Moreover, considering kinematic hardening in the context of anisotropic plastic flow brings out the issue of identification 
of the anisotropy parameters. Indeed, the latter are conventionally determined using either the Lankford (strain) and/or 
stress ratios [17,20,31–41]. When making this identification, it is usual to assume that these coefficients are constant during 
plastic flow. This assumption is valid for models taking into account isotropic hardening. However, when accounting for 
kinematic hardening, this assumption is no longer valid, as it has been shown in the work by Wu et al. [21].

In this paper, the sensitivity of Lankford strain ratios evolution according to kinematic hardening parameters and its 
impact on the simulation of thin sheets forming processes is parametrically studied. In the second section, the theoretical 
framework for the formulation, under large plastic strains, of the anisotropic elastic–plastic constitutive equations accounting 
for nonlinear mixed (isotropic and kinematic) hardening is presented. In this context, the anisotropy of the plastic flow and 
that of the yield function are unified by the same anisotropy parameters. In the third section an exhaustive sensitivity 
analysis of the evolution of Lankford ratios with respect to the kinematic hardening parameters is performed through a 
parametric study.
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