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Separated representations at the heart of Proper Generalized Decomposition are con-
structed incrementally by minimizing the problem residual. However, the modes involved 
in the resulting decomposition do not exhibit a clear multi-scale character. In order to 
recover a multi-scale description of the solution within a separated representation frame-
work, we study the use of wavelets for approximating the functions involved in the sepa-
rated representation of the solution. We will prove that such an approach allows separating 
the different scales as well as taking profit from its multi-resolution behavior for defining 
adaptive strategies.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Model Order Reduction – MOR – techniques allow nowadays solving, under real-time constraints, complex models. In-
tense research activities allowed reaching at present a certain maturity in the domain of model order reduction. Among the 
numerous references, the interested reader can refer to some review papers and books [1–4], covering three major MOR 
technologies: POD (Proper Orthogonal Decomposition), RB (Reduced Basis), and PGD (Proper Generalized Decomposition).

Proper Orthogonal Decomposition (POD) is a general technique for extracting the most significant characteristics of a sys-
tem’s behavior and representing them in a set of “POD basis vectors”. These basis vectors then provide an efficient (typically 
low-dimensional) representation of the key system behavior, which proves useful in a variety of ways. The most common 
use is to project the system-governing equations onto the reduced-order subspace defined by the POD basis vectors. This 
yields an explicit POD reduced model that can be solved in place of the original system. The POD basis can also provide 
a low-dimensional description in which to perform parametric interpolation, infill missing or “gappy” data, perform model 
adaptation, or define hyper-reduction procedures [5]. There is an extensive literature and POD has seen broad application 
across fields. Some review of POD and its applications can be found in [6,7].

Another family of model reduction techniques lies in the use of Reduced Basis constructed by combining a greedy 
algorithm and “a posteriori” error indicators. As for the POD, the Reduced Basis method requires some amount of offline 
work, but then the reduced basis model can be used online for solving different models with control of the solution 
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accuracy, because of the availability of error bounds. When the error is unacceptably high, the reduced basis can be enriched 
by invoking a greedy adaption strategy [8,9].

Separated representations, at the heart of the so-called Proper Generalized Decomposition methods, are considered when 
solving at-hand partial differential equations by employing procedures based on the separation of variables. Then they 
were considered in quantum chemistry for approximating multidimensional quantum wave-function. In the 1980s, Pierre 
Ladevèze proposed the use of space-time separated representations of transient solutions involved in strongly nonlinear 
models, defining a non-incremental integration procedure [10,11]. Later, separated representations were employed for solv-
ing multidimensional models suffering the so-called curse of dimensionality [12,13], as well as in the context of stochastic 
modeling [14]. Then, they were extended to the separation of space coordinates, making possible the solution to models 
defined in degenerated domains, e.g., plate and shells [15], as well as for addressing parametric models where model param-
eters were considered as model extra-coordinates, making possible the offline calculation of the parametric solution, which 
can be viewed as a metamodel or a computational vademecum to be used online for real-time simulation, optimization, 
inverse analysis, and simulation-based control [2,16].

1.1. Separated representations

Within the PGD framework, four kinds of separated representations have been widely considered.

(i) Space-time separated representations that allowed the construction of efficient incremental and non-incremental integra-
tors.
Within the standard finite element method, a space-time solution u(x, t), x ∈ � ⊂ R

3 and t ∈ I ⊂ R, of a transient 
problem is approximated from

u(x, t) ≈
M∑

i=1

u(xi, t)Ni(x) (1)

where M is the number of nodes employed for interpolating the unknown field, located at positions xi , and Ni(x) the 
so-called shape functions. Because of the interpolative property of the shape functions, the approximation coefficients 
correspond to the nodal value of the approximated field, u(xi, t). Thus, in general, when solving a nonlinear problem, 
at least a linear system of size M must be solved at each time step. When considering P time steps (P can reach several 
millions), the complexity grows very fast.
When considering POD-based model order reduction, the solution is projected into the reduced basis composed of 
functions {φ1(x), · · · , φR(x)} extracted from some collected snapshots of the problem solution, with in general R � M, 
and consequently the solution approximation reads

u(x, t) ≈
R∑

i=1

ξi(t)φi(x) (2)

which requires the resolution of linear systems of size R instead of the ones of size M characteristic of finite element 
solutions. The use of a reduced basis implies in many cases impressive computing-time savings.
Approximations (1) or (2) imply a finite sum of time-dependent coefficients and space functions. The last are assumed 
known; they consist of the usual finite element shape functions or the modes extracted by applying, for example, 
Proper Orthogonal Decomposition – POD. A step forward could consist in assuming space functions to be also unknown 
and in computing both time and space functions on the fly. In this case, the approximation reads

u(x, t) ≈
N∑

i=1

Ti(t)Xi(x) (3)

Because both functions involved in approximation (3) are unknown, it defines a nonlinear problem whose solution 
requires an appropriate linearization strategy. The interested reader can refer to [17] and the references therein for 
additional details on the separated representation constructor.
Expression (3) evidences that the solution procedure requires the resolution of about N problems, with N � M and N ∼ R
(in fact a bit more because of the nonlinearity induced by separated representations) involving the space coordinates 
(in general three-dimensional – 3D – and whose associated discrete systems are of size M) for computing the space 
functions Xi(x) and about N one-dimensional – 1D – problems for calculating the time functions Ti(t). Due to the 
fact that the computing cost related to the solution of 1D problems is negligible with respect to the solution of 3D 
problems, the resulting computational complexity reduces drastically, scaling with N instead of P.

(ii) Space separation allowed addressing multi-physics problems defined in degenerated geometries in which at least one of 
its dimensions remains much smaller that the other ones (e.g., beams, plates, shells, laminates...) or processes involving 
additive layers (e.g., automated tape placement, 3D printing, or additive manufacturing).



Download	English	Version:

https://daneshyari.com/en/article/7216094

Download	Persian	Version:

https://daneshyari.com/article/7216094

Daneshyari.com

https://daneshyari.com/en/article/7216094
https://daneshyari.com/article/7216094
https://daneshyari.com/

