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In this paper, we extend the energy-Casimir stability method for deterministic Lie–Poisson 
Hamiltonian systems to provide sufficient conditions for stability in probability of stochastic 
dynamical systems with symmetries. We illustrate this theory with classical examples of 
coadjoint motion, including the rigid body, the heavy top, and the compressible Euler 
equation in two dimensions. The main result is that stable deterministic equilibria remain 
stable in probability up to a certain stopping time that depends on the amplitude of the 
noise for finite-dimensional systems and on the amplitude of the spatial derivative of the 
noise for infinite-dimensional systems.
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r é s u m é

Dans cet article, nous étendons la méthode d’énergie-Casimir de stabilité des systèmes 
déterministes hamiltoniens de Lie–Poisson afin de fournir des conditions suffisantes de 
stabilité en probabilité des systèmes dynamiques stochastiques par des symétries. Nous 
illustrons cette théorie par des exemples classiques de mouvements coadjoints, comme le 
corps solide, la toupie pesante et l’équation d’Euler compressible en deux dimensions. Le 
principal résultat de cette extension est que les équilibres relatifs déterministes stables 
restent stables en probabilité jusqu’à un certain temps d’arrêt. Ce dernier dépend, d’une 
part, de l’amplitude du bruit pour les systèmes de dimensions finies et, d’autre part, de 
l’amplitude de la dérivée spatiale du bruit pour les systèmes de dimensions infinies.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In 1966, V. I. Arnold’s fundamental paper [1] showed that ideal fluid mechanics can be cast into a geometric framework. 
In this framework of differential geometry and Lie group symmetry, the mathematical properties of ideal (nondissipative) 
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classical fluid mechanical systems are easily identified. For example, Arnold’s geometric interpretation [1] of ideal incom-
pressible fluid dynamics as geodesic motion on the group of diffeomorphisms was soon followed by a series of fundamental 
results in analysis, e.g., in [2]. We shall be interested here in another development of Arnold’s geometric approach to fluid 
dynamics, which concerns the nonlinear stability of equilibrium (time-independent) solutions. A nonlinear fluid stability 
method based on the Lyapunov method was already introduced in the early days of geometric mechanics by Arnold in [3,4]
for ideal incompressible fluid flows, whose L2 kinetic energy norm provides the metric for their geodesic interpretation. This 
approach was extended in [5] to the energy-Casimir method, which allows for both kinetic and potential energy contribu-
tions and, hence, may be applied to a large class of ideal mechanical systems. This class of systems comprises Hamiltonian 
systems that admit reduction by Lie group symmetries. Such systems possess Lie–Poisson brackets whose null eigenvectors 
correspond to variational derivatives of conserved quantities called Casimirs. The Casimirs commute under the Lie–Poisson 
bracket with any functionals on the symmetry-reduced space, as well as with the system Hamiltonian itself. For Hamiltonian 
systems that do not have a Casimir function, the energy-momentum method, developed in [6], is used instead. This method 
uses momentum maps instead of the Casimirs to obtain stability results.

Interest has been growing recently in stochastic perturbations of mechanical systems with symmetries whose dynam-
ics can be investigated in the framework of geometric mechanics. The aim of this new science of stochastic geometric 
mechanics is to extend to stochastic systems the mathematical understanding gained for deterministic systems by using 
differential geometry and Lie groups. The theory of stochastic canonical Hamiltonian systems began with Bismut [7], and 
was recently updated in geometric terms in [8]. This theory was extended to stochastic ideal fluid dynamics in [9] by using 
a Lie-group symmetry reduction of a stochastic Hamilton principle. The general theory was developed and illustrated further 
for finite-dimensional Euler–Poincaré variational principles with symmetry, leading to noncanonical stochastic Hamiltonian 
mechanical systems in [10,11].

The present work will seek sufficient conditions for the probabilistic stability of critical points of stochastic geometric 
mechanics systems, by using an extension of the energy-Casimir method. For this endeavour, we will need to introduce an 
appropriate notion of stability in probability; so that a stochastic counterpart of the energy-Casimir method can be devel-
oped and applied to stochastic dynamical systems. The main result of this paper is the proof that a deterministically stable 
stationary solution remains stable in probability up to a finite stopping time, for multiplicative stochastic perturbations that 
preserve coadjoint orbits. This theorem applies only if unique solutions to the stochastic process exist. However, since the 
stability in probability is valid only for finite time, existence and uniqueness of solutions is only needed locally in time.

Plan of the paper. Section 2 reviews the theory of stochastic perturbations of mechanical systems with symmetries de-
veloped by [9,10]. It also distinguishes between the notions of stability in the deterministic and stochastic settings, in the 
context of the deterministic energy-Casimir method. Section 3 forms the core of the paper, in which the stochastic energy-
Casimir method is developed. Section 4 then illustrates the stochastic modifications of the energy-Casimir stability analysis 
for several classical examples, including the rigid body, the heavy top, and compressible Euler equations.

2. Preliminaries

2.1. Stochastic mechanical systems with symmetries

This section begins with defining the type of stochastic perturbations of mechanical systems that we will study in this 
work. For further detail, we refer the interested reader to [10,11] for finite-dimensional systems and to [9] for infinite-
dimensional systems. Although the theory has been studied quite generally in [11], here we will restrict ourselves to the 
examples in [10] and [9]. Let G be a Lie group and g its Lie algebra. For a probability space (�, Ft , P ), we consider a 
Wiener process Wt defined with respect to the standard filtration Ft . The construction is based on the following stochastic 
Hamilton–Pontryagin variational principle: δS = 0 for the stochastic action integral,

S(ξ, g,μ) =
∫

l(ξ)dt +
∫ 〈

μ,◦ g−1dg − ξ dt +
∑

i

σi ◦ dW i
t

〉
(1)

In this formula, g ∈ G , ξ ∈ g, μ ∈ g∗ , where g∗ is the dual of the Lie algebra g under the non-degenerate pairing 〈·, ·〉. 
The vector fields σi ∈ g represent constant multiples of Lie algebra basis elements and the symbol ◦ denotes Stratonovich 
stochastic integrals. The action integral (1) is invariant under left translations of the group G . We refer the reader to [12–15]
for more details on the Hamilton–Pontryagin principle and to [16,15] for the use of Lie groups. Upon taking free variations 
δξ, δμ and δg , and rearranging the terms, we find the momentum map relation δl

δξ
= μ and the Euler–Poincaré equation 

for its stochastic coadjoint motion,

dμ = ad∗
(◦g−1dg)

μ = ad∗
ξμdt + ad∗

σi
μ ◦ dW i

t (2)

where the relation ◦g−1dg = ξ dt − ∑
i σi ◦ dW i

t for the left-invariant reduced velocity is imposed by variations with re-
spect to μ, regarded as a Lagrange multiplier. Thus, the solutions to the stochastic Euler–Poincaré equation (2) preserve 
coadjoint orbits, even in the presence of noise. Besides the coadjoint orbits, other quantities conserved by the stochastic 
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