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We consider a family of linearly viscoelastic elliptic shells, and we use asymptotic 
analysis to justify that what we have identified as the two-dimensional viscoelastic elliptic 
membrane problem is an accurate approximation when the thickness of the shell tends to 
zero. Most noticeable is that the limit problem includes a long-term memory that takes 
into account the previous history of deformations. We provide convergence results which 
justify our asymptotic approach.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In the last decades, many authors have applied the asymptotic methods in three-dimensional elasticity problems in order 
to derive new reduced one-dimensional or two-dimensional models and justify the existing ones. A complete theory regard-
ing elastic shells can be found in [1], where models for elliptic membranes, generalized membranes, and flexural shells are 
presented. It contains a full description of the asymptotic procedure that leads to the corresponding sets of two-dimensional 
equations. Particularly, the existence and uniqueness of the solution to elastic elliptic membrane shell equations can be 
found in [2] and in [3]. There, the two-dimensional elastic models are completely justified with convergence theorems.

More recently, in [4], the obstacle problem for an elastic elliptic membrane has been identified and justified as the 
limit problem for a family of unilateral contact problems of elastic elliptic shells. A large number of actual physical and 
engineering problems have made it necessary to study models that take into account effects such as hardening and memory 
of the material. An example of these are the viscoelastic models (see, for example, [5,6]). In some of these models, we can 
find terms that take into account the history of previous deformations or stresses of the body, known as long-term memory. 
For a family of shells made of a long-term memory viscoelastic material, we can find in [7–9] the use of asymptotic analysis 
to justify with convergence results the limit two-dimensional membrane, flexural, and Koiter equations.

In this direction, to our knowledge, in [10] we gave the first steps towards the justification of existing models of 
viscoelastic shells and finding new ones with the starting point being three-dimensional Kelvin–Voigt viscoelastic shell 
problems. By using the asymptotic expansion method, we found a rich variety of cases for the limit two-dimensional prob-
lems, depending on the geometry of the middle surface, the boundary conditions and the order of the applied forces. The 
most remarkable feature found was that, from the asymptotic analysis of the three-dimensional problems, a long-term 
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memory arose in the two-dimensional limit problems, represented by an integral with respect to the time variable. The aim 
of this Note is to mathematically justify these equations that we identified in [10] as the viscoelastic elliptic membrane 
problem, by presenting rigorous convergence results.

2. The three-dimensional linearly viscoelastic shell problem

We denote Sd , where d = 2, 3 in practice, the space of second-order symmetric tensors on Rd , while “ · ” will represent 
the inner product and | · | the usual norm in Sd and Rd . In what follows, unless the contrary is explicitly written, we will 
use summation convention on repeated indices. Moreover, Latin indices i, j, k, l, ..., take their values in the set {1, 2, 3}, 
whereas Greek indices α, β, σ , τ , ... do it in the set {1, 2}. Also, we use standard notation for the Lebesgue and Sobolev 
spaces. Moreover, for a time dependent function u, we denote u̇ the first derivative of u with respect to the time variable. 
Recall that “→” denotes strong convergence, while “⇀” denotes weak convergence.

Let ω be a domain of R2, with a Lipschitz-continuous boundary γ = ∂ω. Let y = (yα) be a generic point of its closure 
ω̄ and let ∂α denote the partial derivative with respect to yα .

Let θ ∈ C2(ω̄; R3) be an injective mapping such that the two vectors aα(y) := ∂αθ(y) are linearly independent. These 
vectors form the covariant basis of the tangent plane to the surface S := θ(ω̄) at the point θ(y). The surface S is uniformly 
elliptic, in the sense that the two principal radius of curvature are either both positive at all points of S , or both negative at 
all points of S . We can consider the two vectors aα(y) of the same tangent plane defined by the relations aα(y) ·aβ(y) = δα

β , 
which constitute the contravariant basis. We define the unit vector, a3(y) = a3(y) := a1(y)∧a2(y)

|a1(y)∧a2(y)| , normal vector to S at the 
point θ(y), where ∧ denotes the vector product in R3.

We can define the first fundamental form, given as a metric tensor, in covariant or contravariant components, re-
spectively, by aαβ := aα · aβ , aαβ := aα · aβ , the second fundamental form, given as a curvature tensor, in covariant or 
mixed components, respectively, by bαβ := a3 · ∂βaα , bβ

α := aβσ · bσα , and the Christoffel symbols of the surface S by 
�σ

αβ := aσ · ∂βaα . The area element along S is 
√

a dy, where a := det(aαβ).
For each ε > 0, we define the three-dimensional domain 
ε := ω × (−ε, ε) and its boundary �ε = ∂
ε . We also define 

the parts of the boundary, �ε+ := ω × {ε}, �ε− := ω × {−ε} and �ε
0 := γ × [−ε, ε].

Let xε = (xε
i ) be a generic point of 
̄ε , and let ∂ε

i denote the partial derivative with respect to xε
i . Note that xε

α = yα and 
∂ε
α = ∂α . Let � : 
̄ε → R

3 be the mapping defined by

�(xε) := θ(y) + xε
3a3(y) ∀xε = (y, xε

3) = (y1, y2, xε
3) ∈ 
̄ε (1)

If the injective mapping θ : ω̄ → R
3 is smooth enough, the mapping � : 
̄ε →R

3 is also injective for ε > 0 small enough 
(see Theorem 3.1-1, [1]). For each ε, 0 < ε ≤ ε0 (with ε0 defined in Theorem 3.1-1, [1]), the set �(
̄ε) is the reference 
configuration of a viscoelastic shell, with middle surface S = θ(ω̄) and thickness 2 ε > 0. Furthermore, for ε > 0, gε

i (xε) :=
∂ε

i �(xε) are linearly independent, and the mapping � : 
̄ε → R
3 is injective for all ε, 0 < ε ≤ ε0, as a consequence of the 

injectivity of the mapping θ . Hence, the three vectors gε
i (xε) form the covariant basis of the tangent space at the point 

�(xε), and g i,ε(xε), defined by the relations g i,ε · gε
j = δi

j , form the contravariant basis at the point �(xε). We define the 
metric tensor, in covariant or contravariant components, respectively, by gε

i j := gε
i · gε

j , g
ij,ε := g i,ε · g j,ε , and the Christoffel 

symbols by �p,ε
i j := g p,ε · ∂ε

i gε
j .

The volume element in the set �(
̄ε) is 
√

gε dxε , and the surface element in �(�ε) is 
√

gεd�ε , where gε := det(gε
i j).

Besides, let T > 0 be the period of observation and we denote by uε
i : [0, T ] × 
̄ε → R

3 the covariant components of the 
displacement field, i.e. Uε := uε

i g i,ε : [0, T ] × 
̄ε → R
3. For simplicity, we define the vector field uε = (uε

i ) : [0, T ] × 
ε →
R

3, which will denote the vector of unknowns.
We assume that the shell is subjected to a boundary condition of place; in particular, we assume that the displacements 

field vanishes in �(�ε
0), i.e. on the whole lateral face of the shell.

Let us define the space of admissible unknowns,

V (
ε) = {vε = (vε
i ) ∈ [H1(
ε)]3; vε = 0 on �ε

0}
This is a real Hilbert space with the induced inner product of [H1(
ε)]3. The corresponding norm is denoted by || · ||1,
ε .
We assume that the body is made of a Kelvin–Voigt viscoelastic material, which is homogeneous and isotropic, so that 

the material is characterized by its Lamé coefficients λ ≥ 0, μ > 0 and its viscosity coefficients, θ ≥ 0, ρ ≥ 0 (see for instance 
[5,6]). Under the effect of applied forces, the body is deformed, and we can find that uε = (uε

i ) verifies the following 
variational problem of a three-dimensional viscoelastic shell in curvilinear coordinates:

Problem 2.1. Find uε = (uε
i ) : [0, T ] × 
ε → R

3 such that

uε(t, ·) ∈ V (
ε) ∀ t ∈ [0, T ]
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