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In this paper, we characterize random eigenspaces with a non-intrusive method based on 
the decoupling of random eigenvalues from their corresponding random eigenvectors. This 
method allows us to estimate the first statistical moments of the random eigenvalues 
of the system with a reduced number of deterministic finite element computations. 
The originality of this work is to adapt the method used to estimate each random 
eigenvalue depending on a global accuracy requirement. This allows us to ensure a minimal 
computational cost. The stochastic model of the structure is thus reduced by exploiting 
specific properties of random eigenvectors associated with the random eigenfrequencies 
being sought. An indicator with no additional computation cost is proposed to identify 
when the method needs to be enhanced. Finally, a simple three-beam frame and an 
industrial structure illustrate the proposed approach.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Requirements on system performance are increasingly stringent, which leads us to question the design rules currently 
used in structural engineering. The use of safety factors that are often inconsistent and confusing is no longer sufficient 
in many leading-edge fields, and it is necessary to decrease the gap between the observed behavior of a structure and 
predictions from numerical simulations based on deterministic models. In order to accurately predict the real behavior of 
a structure, the variability of the observed behavior needs to be modeled. This variability is mainly due to the system 
parameter’s randomness. The probabilistic approach is adapted to numerical resolution [1,2]. This is thus the framework 
adopted for this work.

The aim is to robustly characterize the vibrational response of a structure in a random manner from a finite element 
model of the structure. We are particularly looking for the eigenspace characterization of linear systems with dynamic prop-
erties considered as random variables. Methods based on statistical sampling provide a good framework to solve the random 
dynamic problem; nevertheless, they need intensive computation to remain accurate [3,4]. The performance of this kind of 
method strongly depends on the quality of the random number generator and the total computational cost increases dra-
matically with the cost of one deterministic case. For these reasons, reduced-order models in a context such as PGD [5], for 
instance, or non-sampling methods have been introduced. Along the latter, different techniques have been developed over 
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the last few decades. Two particular approaches are mainly used in the literature to approximate the statistical properties 
of the response of a random system: the perturbation and the spectral methods.

The perturbation method is based on an approximation of the random variable of interest through the truncation of its 
Taylor expansion. Its implementation is pretty easy, but as high-order perturbation terms are computationally intensive, the 
expansion is generally limited to the second order. Moreover, variations of the system parameters should remain small to 
guarantee the accurate estimation of statistical moments [6]. Generally, random variables are expanded by their Taylor series 
about their mean value. For example, Collins and Thomson [7] estimate statistics of random eigenvalues and eigenvectors. 
Adhikari and Friswell [8] propose to expand around an optimal point in order to better approximate the first moments of 
random eigenvalues. Nair and Keane [9] use a perturbation method to define an approximation subspace and to estimate 
the system’s random eigenvectors.

The Spectral Stochastic Finite Element Method (SSFEM) was introduced by Ghanem and Spanos in [10], inspired by 
Wiener’s works [11]. The method is based on a discretization of the random variables of interest among a finite random 
space. The random variables are decomposed on the basis of orthogonal polynomials in terms of the multi-dimensional ran-
dom variable with a specific probability distribution. This basis is called the polynomial chaos. For problems with Gaussian 
random input parameters, the best-suited basis consists of a set of multidimensional Hermite polynomials [12]; it ensures 
fast convergence and accurate approximation of the random variables. If the input parameters are not Gaussian, other proper 
bases have been developed to ensure an optimal convergence [13]. Once the decomposition basis is chosen, the coefficients 
of the decomposed random variable need to be computed. For this purpose, a Galerkin-based method described in [14]
allows us to estimate the coefficients using Monte Carlo sampling. This method suffers from its sensibility to the quality 
of the random number generator [15,16] and becomes quickly computationally intensive in the case of high-order polyno-
mials or of a high number of random parameters. To overcome these drawbacks, Ghanem and Ghosh [14] propose another 
Galerkin-based method for reducing the problem to a set of deterministic non-linear equations.

In order to characterize the eigenspace of a system with random dynamic properties, polynomial chaos methods give a 
general and accurate framework, but their implementation is rather complex. On the other hand, perturbation methods are 
easy to implement, but their intrinsic assumptions limit their application to academic problems or small variations of the 
input parameters. Based on these techniques, Pascual and Adhikari [17] have proposed and compared methods hybridizing 
perturbation approach and polynomial chaos expansion applied to eigenvalue problems.

The aim of this paper is to propose a non-intrusive approach to characterize a random eigenspace with a reduced 
number of deterministic finite element computations. A simple observation is at the origin of the proposed approach: in 
some cases, the eigenvalues of a structure with random parameters are random, but the corresponding eigenvectors are quite 
deterministic. In these cases, a simple deterministic computation is sufficient to characterize the random eigenmode. For the 
remaining eigenvalues, it is then necessary to use more accurate methods. This approach, referred to as the SMR method 
for Stochastic Model Reduction approach, consists in adapting stochastic modeling to each random eigenvalue depending on 
the global accuracy requirements on the whole set of random eigenvalues. Finally, the proposed approach minimizes the 
computational cost by concentrating computational resources on particular eigendata sets according to their configuration. 
The next section describes the SMR approach and its different refinement levels. As the proposed approach relies on the 
random eigenfrequencies configuration, an appropriate indicator referred to as the “proximity factor” is also developed in 
this section. Then a three-degrees-of-freedom test case illustrates the accuracy of the method, depending on the random 
eigenfrequencies configuration. We characterize the indicator for a large number of configurations. In the fourth section, 
the approach is applied to a more realistic system consisting of a frame with different random Young’s moduli. Finally, an 
industrial structure is used to illustrate the efficiency of the SMR approach in terms of computation time and accuracy of 
statistical moments estimation.

2. Stochastic model reduction

2.1. Problem presentation

The general eigenvalue problem of undamped or proportionally damped systems can be expressed for a problem with 
nd degrees of freedom by

λk(θ)M(θ)�k(θ) = K(θ)�k(θ) (1)

where

λk(θ) ∈ R, �k(θ) ∈ R
nd , M(θ) ∈R

nd×nd , K(θ) ∈R
nd×nd , θ ∈ �

λk and �k are the kth eigenvalue and the kth associated eigenvector. The relationship between the eigenvalues and the 
natural frequencies of the system is λk = ω2

k . The eigenvector �k is assumed to be mass normalized so that ��
k M�k = 1. 

(�, F , p) is the abstract probability space associated with the underlying physical experiments. θ ∈ � is a basic event 
from the complete probability space �. The space of square integrable random variables is denoted by L2(�) and forms a 
Hilbert space with the norm ‖ · ‖L2(�) . Matrices M(θ) and K(θ) represent the mass and stiffness matrices of the structure. 
Their randomness is due to the physical parameters of the structure such as mass density, Young’s modulus or geometric 
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