A folded plate clamped along one side only

Une plaque pliée encastrée d'un côté seulement

Serguei A. Nazarov ${ }^{\mathrm{a}, \mathrm{b}}$, Andrey S. Slutskij ${ }^{\mathrm{a}, \mathrm{b}, *}$
${ }^{\text {a }}$ St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034 Russia
${ }^{\text {b }}$ Institute of Problems of Mechanical Engineering RAS, V.O., Bolshoi pr., 61, 199178, St. Petersburg, Russia

A R T I C L E IN F O

Article history:

Received 23 June 2017
Accepted after revision 6 July 2017
Available online xxxx

Keywords:

Folded thin elastic plate
Asymptotic model
Non-local transmission conditions

Mots-clés:

Plaque mince élastique pliée
Modèle asymptotique
Conditions de transmission non locales

Abstract

An asymptotic model of a folded thin elastic plate is posed on two plane domains and contains transmission conditions at the common line segment of their boundaries. These conditions become non-local and inhomogeneous if only one side of the plate is fixed. Solvability and smoothness results and error estimates for the model are derived.

© 2017 Published by Elsevier Masson SAS on behalf of Académie des sciences.

R É S U M É

On considère un modèle asymptotique de plaque mince élastique pliée reposant sur deux domaines plans et mettant en jeu des conditions de transmission à l'interface entre les deux domaines. Ces conditions deviennent non locales et inhomogènes lorsqu'un seul bord de la plaque est encastré. On fournit des résultats concernant le caractère bien posé du problème, on établit des résultats de régularité des solutions, et on prouve des estimations d'erreur pour le problème modèle.
© 2017 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Formulation of the problem

Let

$$
\begin{equation*}
\Omega_{j}^{h}=\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: y^{j} \in \Sigma_{j},|z|<h / 2\right\}, j=2,3 \tag{1}
\end{equation*}
$$

be two elastic plates with rectangular mid-sections

$$
\begin{equation*}
\Sigma_{j}=\left\{y^{j}=\left(y_{1}^{j}, y_{2}^{j}\right): y_{1}^{j} \in\left(0, \ell_{1}\right), y_{2}^{j} \in\left(0, \ell_{j}\right)\right\}, \ell_{j}>0, j=2,3 \tag{2}
\end{equation*}
$$

[^0]http://dx.doi.org/10.1016/j.crme.2017.07.003
1631-0721/© 2017 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Fig. 1. The junction of plates (a) and its two-dimensional image (b).
where the local coordinates are given by $y^{j}=\left(x_{1}, x_{j}\right)$ and $z^{2}=x_{3}, z^{3}=x_{2}$. By rescaling, we set $\ell_{1}=1$ to make the coordinates and geometrical parameters dimensionless, in particular $h \ll 1$. The homogeneous isotropic elastic junction $\Xi^{h}=\Theta^{h} \cup \Omega_{2}^{h} \cup \Omega_{3}^{h}$ (Fig. 1a) consists of the plates (1) and the coupling bar

$$
\begin{equation*}
\Theta^{h}=\left\{x: x_{1} \in\left(0, \ell_{1}\right), \xi=\left(\xi_{2}, \xi_{3}\right)=\left(h^{-1} x_{2}, h^{-1} x_{3}\right) \in \theta\right\} \tag{3}
\end{equation*}
$$

where the domain $\theta \subset \mathbb{R}^{2}$ is bounded by a piecewise smooth contour $\partial \theta$ and includes the square $\left\{\xi:\left|\xi_{j}\right|<1 / 2\right\}$ so that $\Omega_{2}^{h} \cap \Omega_{3}^{h} \subset \Theta^{h}$. The lateral side $\gamma^{h}=\left\{x: x_{1} \in\left(0, \ell_{1}\right), x_{2}=\ell_{3},\left|x_{3}\right|<h / 2\right\}$ (shaded in Fig. 1 a) is clamped but the remaining part $\Gamma^{h}=\partial \Xi^{h} \backslash \gamma^{h}$ of the surface is traction-free. A volume force f^{h} is applied, e.g., due to gravity. The deformation of the solid Ξ^{h} is described by the boundary value problem

$$
\begin{align*}
& -\mu \Delta u^{h}-(\lambda+\mu) \nabla \nabla \cdot u^{h}=f^{h} \text { in } \Xi^{h} \tag{4}\\
& \sigma^{(n)}\left(u^{h}\right)=0 \text { on } \Gamma^{h} \backslash \Upsilon^{h} \tag{5}\\
& u^{h}=0 \text { on } \gamma^{h} \tag{6}
\end{align*}
$$

where $\nabla=\operatorname{grad}, \nabla \cdot=\operatorname{div}$ and Δ is the Laplace operator. Moreover, $\lambda \geq 0$ and $\mu>0$ are the Lamé constants, $u=\left(u_{1}, u_{2}, u_{3}\right)$ is the displacement vector, and stresses are determined as follows:

$$
\begin{gather*}
\sigma_{p q}=\mu\left(\partial_{p} u_{q}+\partial_{q} u_{p}\right)+\delta_{p, q} \lambda\left(\partial_{1} u_{1}+\partial_{2} u_{2}+\partial_{3} u_{3}\right), \quad \partial_{p}=\partial / \partial x_{p} \\
\sigma^{(n)}=\left(\sigma_{1}^{(n)}, \sigma_{2}^{(n)}, \sigma_{3}^{(n)}\right), \quad \sigma_{p}^{(n)}=n_{1} \sigma_{p 1}+n_{2} \sigma_{p 2}+n_{3} \sigma_{p 3} \tag{7}
\end{gather*}
$$

Here, $\delta_{p, q}$ is the Kronecker symbol and $n=\left(n_{1}, n_{2}, n_{3}\right)$ is the unit vector of the outward normal defined everywhere on $\partial \Xi^{h}$, with the exception of the union Υ^{h} of closed edges on the surface.

The main goal of this paper is to present the asymptotics as $h \rightarrow+0$ of elastic fields in the folded plate Ξ^{h} clamped along the only lateral face γ^{h}.

2. Motivation

In the pioneering paper [1], the asymptotics of elastic fields in a cantilever, a junction of two perpendicular thin rods, is examined and the transmission conditions are derived at the joint point of two line segments substituting for the spacial rods in the model. The most intriguing observation in [1] is that the obtained one-dimensional models of the cantilevers with one or two clamped exterior ends differ from each other, namely they involve distinct groups of transmission conditions. Further effects of the interaction between elements of anisotropic thin elastic rod construction are found out in the paper [2], where the classification "fixed/movable" for rods and nodes in the junction is introduced and a procedure to detect its movable fragments is developed. The latter require a certain modification of asymptotic Ansätze for elastic fields and introduces new algebraic unknowns and orthogonality conditions for unknown functions on edges of the "skeleton" of the elastic junction. An adaptation of this procedure and asymptotic analysis of the spectral elasticity problem for various junctions of rods is given in [3,4].

Similar interaction effects can be readily predicted in thin-wall structures. This direction of mathematical studies is started with the paper [5], where a folded plate is considered, that is, a junction of two perpendicular thin straight plates Ω_{2}^{h} and Ω_{3}^{h}. The resultant transmission conditions at the common side Υ of the rectangles Σ_{2} and Σ_{3}, i.e. the plate mid-sections, are derived under the assumption that both plates are fixed along the lateral sides, which are parallel to the

https://daneshyari.com/en/article/7216186

Download Persian Version:

https://daneshyari.com/article/7216186

Daneshyari.com

[^0]: The work is supported by the Russian Scientific Foundation, grant No. 17-11-01003.

 * Corresponding author.

 E-mail addresses: s.nazarov@spbu.ru, srgnazarov@yahoo.co.uk (S.A. Nazarov), a.slutsky@spbu.ru (A.S. Slutskij).

