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a b s t r a c t 

This paper presents an Eulerian formulation of growth for general elastic anisotropic re- 

sponse. The constitutive equations model homeostasis, which is the inelastic process caus- 

ing the elastic deformation measures to tend towards their homeostatic values. The nu- 

merical implementation into ABAQUS using robust, strongly objective integration algo- 

rithms for the evolution equations is discussed. Differences between the Eulerian and the 

Lagrangian multiplicative formulations of growth are examined using examples modeling 

partially unconfined and confined growth. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The analysis of growth and remodeling of biological tissues has been an active field in mechanics for decades. 

Taber (1995) presented a review of the literature related to growth, remodeling and morphogenesis of biological tissues, 

where he connected growth with addition/removal of mass, remodeling with change in material properties and morpho- 

genesis with change in shape. More recent reviews of growth in living systems can be found in Kuhl (2014) for a solid 

mechanics formulation, and in Ambrosi et al. (2011) , Ateshian and Humphrey (2012) and Sciume et al. (2013) for a mixture 

theory formulation. Also, it is noted that Humphrey and Rajagopal (2002) proposed a simplified constrained mixture model 

with no relative motion between the constituents. 

The multiplicative form of finite deformation plasticity attributed to Bilby, Bullogh, and Smith (1956) , Kröner (1959) and 

Lee (1969) was first used by Rodriguez, Hoger, and McCulloch (1994) and has become the standard approach to model 

the inelastic nature of growth. In this model, the total deformation gradient F is expressed multiplicatively in terms of a 

growth deformation tensor F g from the stress-free reference configuration to an intermediate stress-free configuration and 

an elastic deformation tensor F e from the intermediate configuration to the present deformed configuration, such that 

F = F e F g . (1) 

Recently, Rubin, Safadi, and Jabareen (2015) developed a unified Eulerian theoretical structure for modeling interstitial 

growth and muscle activation in soft tissues which is based on the ideas of Eckart (1948) and Leonov (1976) , who proposed 

evolution equations directly for elastic deformation measures. Specifically, use is made of the pure separation of dilatation 

and distortion ( Flory, 1961 ) to propose evolution equations for the elastic dilatation J e and a symmetric unimodular second 

order tensor B 

′ 
e [ det (B 

′ 
e ) = 1] . The theory in Rubin et al. (2015) was developed as a thermomechanical theory treating the 
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tissue as an open system with a rate of mass supply requiring a constitutive equation. A unique feature of this theory is 

the modeling of homeostasis, which is an inelastic process that causes a tendency for (J e , B 

′ 
e ) to approach their homeostatic 

values ( J h , H 

′ ). A purely mechanical form of this theory was presented in Safadi and Rubin (2017a) . Specifically, the 

constitutive equation for the Cauchy stress T is specified so that a stress-free state of the tissue is given by 

T = 0 for J e = 1 and B 

′ 
e = I , (2) 

where I is the second order identity tensor. In particular, the homeostatic state of the material need not be stress-free 

T � = 0 for J e = J h and B 

′ 
e = H 

′ , (3) 

The objectives of the present paper are to generalize the formulation in Safadi and Rubin (2017a) to general elastic 

anisotropic response and to discuss aspects of the numerical implementation of the model in the commercial finite-element 

code ABAQUS (2017) . A simple example of plane strain axisymmetric deformation of a hollow circular cylindrical tube is 

used to emphasize the significant differences between the standard Lagrangian formulation (1) and the Eulerian formula- 

tion in Rubin et al. (2015) and Safadi and Rubin (2017a) . Specifically, it will be shown that modeling homeostasis and the 

homeostatic state gives control of the stress field in confined growth which need not be present in the standard model. 

Additional examples presented here related to early cardiac growth processes of the simple heart tube model discussed in 

Shi, Yao, Xu, and Taber (2014) , which used the Lagrangian formulation, demonstrate capabilities of the Eulerian approach to 

modeling growth in tissues. 

An outline of the paper is as follows. Section 2 records generalized equations for growth, Section 3 analyzes stress- 

free growth, and Section 4 describes the implementation of robust, strongly objective, numerical algorithms in ABAQUS. 

Section 5 presents a number of examples that emphasize differences in the proposed Eulerian formulation of growth and 

the standard Lagrangian formulation. Section 6 demonstrates the versatility of the Eulerian formulation in simulating the 

mechanics of early cardiac morphogenesis, Section 7 presents conclusions and the Appendix summarizes details of some 

mathematical expressions. 

2. Generalized equations for growth 

Recall that a material point in the present configuration is located by the position vector x at time t relative to a fixed 

point and its velocity v is given by 

v = 

˙ x , (4) 

where a superposed ( ̇ ) denotes material time differentiation. The velocity gradient L and the total deformation rate tensor 

D are defined by 

L = ∂ v /∂ x , D = 

1 

2 

(L + L T ) . (5) 

The model in Rubin et al. (2015) was developed as a thermomechanical theory with the tissue considered to be an 

open system with a rate of mass supply. Here, attention is limited to a purely mechanical theory at constant reference 

temperature as in Safadi and Rubin (2017a) . In this theory, the elastic dilatation J e is defined as the ratio of the mass 

density ρ0 of the tissue in a stress-free state and its current mass density ρ

J e = 

ρ0 

ρ
. (6) 

Using the modified expression for the rate of mass supply presented in Safadi and Rubin (2017a) , the evolution equation 

for J e takes the form 

˙ J e 

J e 
= D · I − �m 

ln 

(
J e 

J h 

)
, �m 

≥ 0 , J h > 0 , (7) 

where A · B = tr (AB 

T ) is the inner product between two second order tensors ( A, B ), �m 

is a non-negative function and 

J h is the positive homeostatic value of J e . In addition, the symmetric, unimodular, positive definite, second order elastic 

distortional deformation tensor B 

′ 
e is determined by the evolution equation 

˙ B 

′ 
e = LB 

′ 
e + B 

′ 
e L 

T − 2 

3 

(D · I ) B 

′ 
e − �

[
B 

′ 
e −

(
3 

B 

′−1 
e · H 

)
H 

]
, 

� ≥ 0 , H 

′ = ( det H ) −1 / 3 H , (8) 

where � is a non-negative function and H is a symmetric positive definite tensor. 

The terms associated with ( �m 

, �) in (7) and (8) characterize homeostasis, which is the inelastic rate process that causes 

a tendency for (J e , B 

′ 
e ) to approach their homeostatic values ( J h , H 

′ ), respectively. The functions ( �m 

, �), which control the 

rates of homeostasis, and the homeostatic values ( J h , H 

′ ) require constitutive equations. Since the functions ( �m 

, �, J h , H 

′ ) 
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