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a b s t r a c t 

The boundary-value problem of Neo-Hookean incompressible hyperelastic cracked solid 

under a superposition of a plane deformation to an anti-plane one is formulated. An 

asymptotic analysis is then employed to compute the elastostatic fields near the crack front 

and their principal properties are illustrated. In a particular basis, the crack is bound to 

open independently of the magnitude and the mode of the boundary conditions at infin- 

ity. The stress field components have different singularities and each one can posses more 

than one singular term. Some disagreements with the linear theory are evidenced. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 

In fracture mechanics, the three-dimensional character nature of the deformation and stress fields induced by a crack 

is well recognized ( Rice, 1968 ). This is asserted by common experimental observation ( Rosakis & Ravi-Chandar, 1986 ) and 

numerical experiences ( Nakamura & Parks, 1988; 1990; Rannou et al., 2010 ). However, only a few theoretical analyses are 

done to assess analytically the three-dimensional elastostatic fields, especially for nonlinear behaviours. In fact, the bound- 

ary value mathematical problem associated with the three-dimensional crack geometry is rarely easy to solve analytically 

( Ogden, 1997 ). This is due to the complicated crack geometry which can be modelled as a conical point, a front, a vertex or 

the intersection of a front with a vertex ( Yosibash, 2011 ). 

To this end, the objective of this paper is focused in the investigation and the analysis of the elastostatic fields corre- 

sponding to the superposition of the in-plane transformation to the anti-plane transformation in a cracked Neo-hookean 

hyperelastic long solid. This is a particular class of the three-dimensional crack problem with a simple hyperelastic potential 

which can elucidate the other more complicated class of problem. We mention here that from a mathematical point of view 

the neoHookean material is of prime interest for finite elasticity to deduce analytic solutions ( Hill, 2001 ) but this model 

is poor to predict real experimental data. One way to overcome this limitation is to use a secondary in-plane deformation 

approach with sophisticated models for which the anti-plane shear deformation isn’t possible ( Pucci & Saccomandi, 2013 ). 
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In linear elasticity, the Linear Fracture Mechanics (LEFM) based on the superposition principle gives a three-dimensional 

analytic elastostatic field. A criticism and a review of the LEFM can be founded in the book of Bui (2007) in which 

some three-dimensional linear elastic problems were summarized. A recent review and generalization were done by 

Yosibash (2011) . The question of the order of singularity near front was treated in Chaudhuri and Xie (20 0 0) and Leblond and 

Torlai (1992) by different analytic and analytic/numerical methods. For solids with multiple cracks a review can be found in 

Kachanov (1993) . 

For nonlinear power-type constitutive laws behaviour with small deformation, the pioneer works of Hutchinson (1968) ; 

Rice (1966, 1967) ; Rice and Rosengren (1968) for a crack with traction-free surfaces under pure in-plane or pure out-of-plane 

shear loading conditions, showed that the asymptotic development is made by the same power-type singularities. Whereas 

the majority of analytic analysis inspired by the above papers are restricted to a pure mode I, II, III or mixed mode I/II, ex- 

perimental ( Rosakis & Ravi-Chandar, 1986 ) and numerical ( Nakamura & Parks, 1990 ) investigations have confirmed that the 

three-dimensional cracked solid undergoes failure under mixed mode I/III or II/III. Nevertheless, there are few papers, based 

on two approaches, dealing with the determination of the analytic stress and deformation fields near the three-dimensional 

crack front under combined multi-axial mode. The first approach is based on the heuristic and phenomenological concept 

firstly introduced by Guo (1993a,b) who enriches the stress field by in-plane and out-of-plane constraints functions due to 

the stress tri-axiallity. The second approach uses the asymptotic development method with the perturbation technique to 

analyze three-dimensional crack under combined anti-plane and in-plane deformation by assuming an infinite long cylin- 

der. It was shown that the singular exponent of the anti-plane deformation differs from the one of the in-plane deformation 

except for the linear hardening behaviour ( Pan, 1990 ). An interesting review in the topic is made in the book of Yuan (2013) . 

Within the framework of finite deformation ( Ogden, 1997 ), in the paste decades, only few works have been focused on 

the analysis of the fully three-dimensional deformation and stress fields. This is due to the formidable complexity of the 

mathematical problem ( Ogden, 1997 ), in contrast to plane problem, which makes the boundary-value problem equations 

highly nonlinear and very difficult to solve analytically or even numerically. A generalisation from a plane to a pseudo- 

plane deformation problem with uniform axial extension Carroll and Rajagopal (1986) ; Hill and Shield (1986) ; Rajagopal and 

Wineman (1984) and non-uniform axial extension ( Saccomandi, 2005 ) was conducted. Partial and exact solutions to some 

three-dimensional problems were done in a series of papers of Hill and his co-authors by exploiting the ’reciprocal equi- 

librium equations’ for particular hyperelastic potentials Hill (1973, 2001) ; Hill and Lee (1989) . Coupling between anti-plane 

and plane deformations fields in the boundary value problem was shown to exist for nonlinear hyperelastic potential which 

makes it hard to resolve and the uncoupled governing equations hold only for the linear Neo-Hookean material ( Horgan & 

Saccomandi, 2003 ). Accordingly, Pucci and Saccomandi (2013) used a perturbed hyperelastic potential approach to deduce 

a secondary deformation due to a principal one. Elastostatic fields near the crack front of a hyperelastic solid was first an- 

alyzed by Knowles and Sternberg (1973, 1974) for plane deformation, Knowles and Sternberg (1983) for plane stress and 

Knowles (1977) for anti-plane deformation hypothesis. Among other researchers, the work of Stephenson (1982) is to be 

credited to have clarified the local structure characteristic nature of the elastostatic fields near the crack tip of a general- 

ized Mooney-Rivlin solid under plane deformation kinematic condition and mixed boundary conditions at infinity (Mode I 

and II). It was shown that the crack opens symmetrically, under Mode II conditions, contrary to the predictions of linear 

theory. In other words, the nonlinear global crack problem cannot admit an antisymmetric solution. A review of this topic 

is presented by Long and Hui (2015) and some other comments are done ( Mansouri, Arfaoui, Trifa, Hassis, & Renard, 2016 ). 

For anti-plane deformation kinematic condition, some necessary and sufficient mathematical conditions, restricted the hy- 

perelastic potential form, are given by Knowles (1976) and Knowles (1977) for incompressible materials to admit non-trivial 

states of anti-plane shear ( Karoui, Arfaoui, Trifa, & Hassis, 2015 ). 

The analysis proposed in the present work is a first approach to examine the three-dimensional character of the singular 

elastostatic fields near the crack front of a long Neo-Hookean hyperelastic solid induced by an anti-plane shear transforma- 

tion superposed to a plane transformation. The local (near the crack front) boundary value problem is formulated in a fully 

nonlinear Lagrangian framework which can be seen as the composition of two local boundary value problems: the plane 

transformation problem and the anti-plane problem ( Grisvard, 2011 ). An asymptotic analysis is carried out in order to cal- 

culate the deformation and stress fields near the crack faces. The structure of the singular deformation field is examined in 

detail. Emphasis is placed on describing the crack- profile after deformation. Finally, it is to be mentioned that the resulted 

stress field is not the sum of stress field deduced from the two local boundary value problems. This is due to the nature of 

the nonlinear problem which induces stress field coupling between the in-plane and out-of-plane transformations. 

2. Formulation of the global crack problem 

Consider an isotropic homogeneous incompressible hyperelastic body B which, in its undeformed configuration, occupies 

an infinite region R 0 fig. 1 

R 0 = { x | ( x 1 , x 2 ) ∈ �0 , −∞ < x 3 < + ∞ } , (1) 

where x is the position vector of the particle in the undeformed configuration and �0 denotes a cross-section of R 0 . Then, 

the plane domain �0 can be described by a polar coordinates system 

�0 = { ( r, θ ) | r ∈ [0 , + ∞ [ , θ ∈ [ −π, π ] } . (2) 
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