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a b s t r a c t 

We discuss applicability of the two-step homogenization procedure to microstructures 

formed by spherical pores of two distinct sizes with total porosity of 40%. Results of 

one- and two-step homogenizations utilizing Non-Interaction Approximation (NIA), Mori–

Tanaka–Benveniste Scheme (MTB) and Differential Scheme (DS) are compared with nu- 

merical data obtained by finite element simulations. A modified collective rearrangement 

method powered by computationally efficient hierarchical k-means tree algorithm is de- 

veloped for generating microstructures containing spherical pores of different sizes with 

prescribed partial porosities. Two-step procedure turns to be almost commutative with re- 

spect to the sequence of homogenization step showing 0.2% as a maximum relative error. 

Sensitivity of approximated overall elastic properties to the size difference of spherical in- 

homogeneities is observed with the shear modulus showing stronger dependence than the 

bulk modulus. The two-step MTB can be used to approximate effective properties of solids 

with spherical pores of distinct size as long as this size difference between pore families 

is larger than 10 times. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The problem of the effective properties of heterogeneous materials plays a key role in material characterization provid- 

ing the tools for analysis of both naturally occurring and man-made materials. Many modern materials are characterized 

by complex structure that require detailed representation, providing significant challenges in the modeling procedure. Di- 

rect numerical simulation requires fine-scale resolution and thus leads to great computational costs mostly not achievable 

even for supercomputers. Exact analytical solutions are very limited due to the complexity of boundary value problem and, 

therefore, most of the available studies use homogenization procedure, based on the solution for a single inhomogeneity, to 

find overall properties of a heterogeneous material. Generally, this approach can be applied in one- and multi-step homog- 

enization models. 

The idea of two-step (or, generally, multi-step) homogenization is intuitively very clear when there are two distinct scales 

of heterogeneity and is rooted in classical concepts of Navier and Cauchy (see historical remarks in the review of Markov 

(20 0 0) ). Implicitly, all the homogenization schemes use this technique. For example, when we apply micromechanical ap- 

proximations to calculate overall properties of a, say, metal matrix reinforced with ceramic particles, we assume that the 
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matrix material (consisting of randomly oriented crystalline with various defects) is homogeneous. Thus, this process con- 

tains two steps: (A) implicit first step, at which the properties of the matrix are obtained (this step may be experimental) 

and (B) explicit second step when the overall properties of the composite are calculated. 

To the best of our knowledge, the idea of multi-step homogenization procedure attracted attention of many researchers 

in late 1990s since it allows one to avoid the reported problems appearing in application of Mori–Tanaka–Benveniste 

scheme to anisotropic multiphase composites—loss of symmetry and positive definiteness of the effective compliance tensor 

( Benveniste, 1987; Ferrari, 1991; Norris, 1989; Weng, 1990 ). Indeed, if the multi-step homogenization technique is used, the 

material can be considered as a two-phase one at each step. Dai, Huang & Wang (1998) used two-step homogenization tech- 

nique to predict overall properties of multiphase hybrid composites. Thermo-mechanical properties for compression molded 

composites parts were considered by Lielens, Pirotte, Couniot, Dupret & Keunings (1998) . The representative volume was de- 

composed into the set of aggregates having the same fiber orientation and volume fraction. Finally, effective properties were 

found by averaging reference composites with different fiber orientations. Lu & Weng (1998, 20 0 0 ) used two-step homog- 

enization to calculate overall properties of polymer composite shape-memory alloy (SMA) reinforced where the SMA itself 

consisted of the parent austenite and transformed martensite. Pierard, Friebel & Doghri (2004) applied multi-step tech- 

nique for thermo-elastic composites with representative volume element characterized by a set of initially homogenized 

grains. Overall properties were calculated using Voight and Reuss models, due to physically unacceptable results of Mori–

Tanaka–Benveniste scheme for multi-phase composites. Effective properties of short-fiber reinforced polymer composites 

were analyzed by Dray, Gilormini & Régnier (2007) . Firstly, Mori–Tanaka–Benveniste scheme was used to predict proper- 

ties of aggregate containing identically oriented fibers. At the second step, overall properties of the composite containing 

different fiber orientations were predicted by stiffness averaging and orthotropic closure approximations. Gruescu, Giraud, 

Homand, Kondo & Do (2007) considered two-step homogenization procedure to predict effective thermal conductivity of 

partially saturated rocks containing solid and porous inhomogeneities. Multi-step homogenization technique was applied for 

metal-ceramic composites with lamellar domains by Ziegler, Neubrand & Piat (2010) , who compared numerical approach 

against micromechanical modeling. Barai & Weng (2011) used two-step homogenization to study plasticity strength of car- 

bon nanotube-reinforced metal composites. Nguyen, Giraud & Grgic (2011) used two-step homogenization procedure to cal- 

culate effective elastic properties of the porous rocks characterized by an assemblage of grains (oolites) embedded in a 

calcite matrix. Pores on micro-scale were firstly homogenized to approximate effective properties using composite sphere 

assemblage model ( Hashin, 1962 ). Shen, Kondo, Dormieux & Shao (2013) used multi-step homogenization procedure to for- 

mulate macroscopic plastic behavior of Callovo Oxfordian argillite containing porous clay matrix reinforced with linear elas- 

tic mineral inhomogeneities. Effective stiffness of polymer-clay nanocomposites with aligned inhomogeneities were analyzed 

by Pahlavanpour, Hubert & Lévesque (2014) . Authors compared one- and two-step homogenization procedures (both analyt- 

ical and numerical) against direct 3D FEA modeling and experimental data extracted from the literature. It was concluded 

that the analytical multi-coated inclusion models result in more accurate approximations. Giraud, Sevostianov, Chen & Gr- 

gic (2015) obtained effective thermal conductivity of oolitic limestones using two-step homogenization procedure, where 

the self-consistent scheme and Maxwell’s scheme have been applied in the first and second steps, respectively. 

As it follows from this literature review, multi-step homogenization technique is widely used for materials containing 

distinct families of inhomogeneities. However, to the best of our knowledge, the framework of the applicability of this 

technique has never been discussed in the literature. We address this problem focusing on the simplest case of a material 

containing spherical pores at two distinct sizes and compare results of finite element simulations with the predictions of 

micromechanical schemes. 

2. Two-step homogenization in various one-particle approximations 

2.1. Compliance contribution tensor 

Compliance contribution tensors have been first introduced in the context of pores and cracks by Horii & Nemat- 

Nasser (1983) (see also detailed discussion in the book of Nemat-Nasser, Hori & Achenbach, 1993 ). Components of this 

tensor were calculated for 2-D pores of various shape and 3-D ellipsoidal pores in isotropic material by Kachanov, Tsukrov 

& Shafiro (1994) . For general case of ellipsoidal elastic inhomogeneities, these tensors were formally defined and calculated 

by Sevostianov & Kachanov (1999 , 2002 ). Following these works, we consider a homogeneous elastic material (matrix) with 

the compliance tensor S 0 containing an isolated inhomogeneity of volume V 1 having different compliance tensor S 1 . The 

compliance contribution tensor of the inhomogeneity is a fourth-rank tensor H that gives the extra strain (per reference 

volume V ) due to its presence: 

�ε = 

V 1 

V 

H : σ 0 , or , in components , �ε i j = 

V 1 

V 

H i jkl σ
0 
kl , (2.1) 

where σ 0 
kl 

are remotely applied stresses that are assumed to be uniform within V in the absence of the inhomogeneity. For 

an ellipsoidal inhomogeneity, its compliance contribution tensor is expressed in terms of Hill’s tensor P ( Hill, 1965 ; Walpole, 

1969 ) as 

H = 

[
( S 1 − S 0 ) 

−1 + C 0 : ( J − P : C 0 ) 
]−1 

. (2.2) 
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