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a b s t r a c t

The classical problem of effective viscosity of a Newtonian fluid containing rigid particles is
discussed. For spherical particles, it is shown that the usual Einstein’s formula
l=l0 ¼ 1þ 2:5/ represents an incorrect formulation of the non-interaction approximation
(NIA): it violates a rigorous lower bound for the effective viscosity. The correct formulation
yields the effective viscosity in the form l=l0 ¼ 1� 2:5/ð Þ�1 that agrees with the bounds
and remains accurate at substantial volume fractions of particles / (up to 20%–30% accord-
ing to various data sets). This result is extended to ellipsoidal particles, with the emphasis
on mixtures of particles of diverse aspect ratios and cases of anisotropic viscosity (due to
non-random orientations of particles). For mixtures of particles of diverse shapes (such
as ellipsoids of diverse aspect ratios), the effective viscosity cannot generally be expressed
in terms of either / or any other of concentration parameter, and the very concept of con-
centration parameters becomes questionable. The case of thin platelets is considered in
detail; in this case, the concentration parameter is identified, and it is different from the
volume fraction.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the effective viscosity of a fluid containing rigid particles, in the limit of low Reynolds numbers (creeping
flow). This is a classical homogenization problem where the key result belongs to Einstein (1906, 1911) who considered par-
ticles of the spherical shape in the non-interaction approximation. Using the solution for a flow around a spherical particle,
he obtained the effective viscosity l in the form

l=l0 ¼ 1þ 5=2/; ð1:1Þ

where l0 is the viscosity in absence of particles and / is particles’ volume fraction.
We point out two shortcomings of this result:

� Beyond correctly predicting the initial slope dl=d/ð Þ/¼0, its agreement with experimental data is limited to relatively
small values of /;
� It violates a rigorous lower bound for the effective viscosity, at any value of /.
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As discussed in the text to follow, the root of these shortcomings is that the non-interaction approximation (NIA) has two
dual formulations that correspond to summation of either viscosity- or fluidity contributions of particles. The two coincide
asymptotically, at /! 0 [leading to a frequent confusion – identification of the NIA with the ‘‘dilute limit’’, or the ‘‘linear
limit’’; see, for example, books and reviews of Mewis and Wagner (2012), Stickel and Powell (2005), and Brader (2010)].
However, one of them violates the lower bound for the effective viscosity and has poorer agreement with data.

The present work addresses the following issues:

(A) Spherical particles: Proper formulation of the non-interaction approximation that leads to modification of the
Einstein’s Eq. (1.1);

(B) Non-spherical particles. For these cases, explicit algebraic extensions of the Eq. (1.1) – i.e. finding the coefficient at / –
has not been given in literature, to our knowledge. We mention the result of Jeffery (1922) concerning spheroidal par-
ticles (of identical aspect ratios) that provides two estimates of these coefficients corresponding to the minimal and
maximal viscous dissipation. The Jeffery’s result is actually obtained in the non-interaction approximation, for which
the effective viscosities in the case of ellipsoidal particles can be obtained explicitly for an arbitrary orientation dis-
tribution, as shown in this work. (Note that Jeffery’s estimates are obtained under the assumption that the viscosity
is isotropic whereas the suspension considered by him is actually anisotropic: ellipsoidal particles tend to align them-
selves with the direction of the flow). Importantly, our analysis covers mixtures of diverse shapes – the problem of
obvious practical relevance (e.g. Fig. 1);

(C) Anisotropic viscosity caused by non-random orientations of non-spherical particles, the background fluid assumed iso-
tropic. Although anisotropy fluids have been considered in the literature [see e.g. Rajagopal (2006) and Perlacova and
Pru�ša (2015)], the anisotropic suspension does not seem to have attracted much attention in literature, it is not
uncommon. Firstly, we mention that ellipsoidal particles gradually align themselves with the direction of the flow,
leading to gradual development of anisotropy – the phenomenon that was hypothesized by Jeffery and experimentally
observed (Saffman, 1956; Taylor, 1923; Mueller, Llewellin, & Mader, 2010). Further evidence of anisotropy is provided
by Fig. 2 that shows red blood cells in a blood flow, in a random orientation state (Fig. 2A) and in nearly perfectly
aligned state (2B). Non-random orientations have also been observed for polarized particles in electro-rheological flu-
ids (Halsey, 1992) and in magnetized suspensions in magmatic flows (Mueller, Llewellin, & Mader, 2011a, 2011b).

Remark. The classical linear viscosity law is assumed in the present work. This excludes fluids exhibiting non-linear behav-
ior (Rajagopal, 2006). Also, various complicating factors are ignored. In particular, we ignore the Brownian motion effects
characterized by the Péclet number, Pe ¼ l0a3 eij

�� ��= kBTð Þ where a is a characteristic size of the particle, eij

�� �� is the magnitude
(Euclidean norm) of the symmetric part of the velocity gradient tensor, kB is the Boltzmann constant and T is the absolute
temperature. At Pe >> 1, macroscopic hydrodynamic forces are much larger than the ones related to the thermal motion of a
particle, and this is the case assumed in the present analysis (for analysis of thermal motion of spheroidal particles we refer
to works of Brenner (1972, 1974)).

As far as the issue (A) is concerned, extensive experimental data on suspensions containing spherical particles
consistently show that the initial slope dl=d/ð Þ/¼0 generally agrees well with Eq. (1.1); however, this equation quickly loses
accuracy as volume fraction increases: the viscosity increases substantially faster than predicted (Ford, 1960; Mewis &
Wagner, 2012; Oliver & Ward, 1953; Russel, Saville, & Schowalter, 1989). Computational simulations have led to similar
conclusions (Chang & Powell, 1994a, 1994b; Phung, 1993).

Fig. 1. Mixture of red blood cells, white blood cells, platelets and enzymes in the arteries. (Buzzle.com).
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