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a b s t r a c t

A classical problem in lubrication theory is to predict the pressure distribution in a thin
fluid film between two surfaces which are in relative motion. If one of the surfaces is rough,
then the distance between the surfaces is rapidly oscillating. This leads to that the govern-
ing Reynolds partial differential equation involves rapidly oscillating coefficients. The
branch in mathematics which considers such types of equations is known as homogeniza-
tion. In this paper we study the effects of surface roughness for a special type of compress-
ible fluid. In particular, we derive homogenization results connected to the friction force
and the load carrying capacity.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

An essential issue in lubrication theory is to describe the flow behavior between two close surfaces which are in relative
motion. This type of flow take place in for example bearings, hip joints, gearboxes etc. The main unknown is the pressure in
the fluid. When the pressure is found it is possible to compute other fundamental quantities as friction force and load car-
rying capacity. The friction force gives information about which force that has to be applied to keep the surfaces in relative
motion and the load carrying capacity is the load carried by the surfaces. In this paper we will consider the effects of surface
roughness under the assumption that the fluid has constant bulk modulus (see (2) below).

Assume that we have two surfaces, one lower and one upper. The lower surface, Sl, is smooth. For simplicity we let Sl lie in
the x1, x2-plane. Indeed, let X be an open bounded subset of R2 and x = (x1, x2) 2X then Sl is described by
fðx;0Þ 2 R3 : x 2 Xg. Let us now turn to the description of the upper surface, which contrary to the lower surface includes
surface roughness. In order to describe the upper surface we introduce an auxiliary function 0 < a1 6 h(x, y) 6 a2, which is
Y-periodic in y. The upper surface, Se

u, is described, in terms of the auxiliary function h, as fðx;heðxÞÞ 2 R3 : x 2 Xg, where
he(x) = h(x, x/e), e > 0. An important example, from an application point of view, is when h is of the form h(x, y) = h0(x) + hr(y).
This means that h0 describes the global geometry, hr represents an evenly distributed roughness on the upper surface and
e > 0 is a parameter which describes the fineness of the roughness. Note that he is the distance between the surfaces.

Assume that the upper surface is stationary and that the lower surface is moving in the x1 direction with the speed v. If a
fluid with constant viscosity, g, and a pressure dependent density, q, occupies the region between the surfaces, then the
pressure, pe, in the fluid, due to the relative motion of the surfaces, is often modeled by the Reynolds equation
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Without loss of generality we assume that pe = pa at the boundary (pa is a constant ambient pressure). For a derivation of
Reynolds equation see e.g. the original work (Reynolds, 1886) or the book (Hamrock, 1994). A mathematical proof of the
transition between the Stokes equations and the Reynolds equation can be found in Bayada and Chambat (1986).

The main focus of this paper is to study the effects of surface roughness in the case when the relation between the density
and the pressure is of the form

qðpeÞ ¼ qaeðpe�paÞ=b: ð2Þ

Here the constant qa is the density at the ambient pressure and b is a positive constant (bulk modulus). We remark that this
relation is equivalent to the commonly used assumption that the lubricant has constant bulk modulus b, (see e.g. Elrod, 1981
& Fredrik et al., Fredrik, Andreas, Roland, & Sergei, 2007).

Due to the special form of the relation (2) it is possible to transform the nonlinear Eq. (1) into a linear equation. Indeed,
define the function we as

weðxÞ ¼ qðpeðxÞÞ: ð3Þ

Then

rwe ¼ q0ðpeÞrpe ¼ qab
�1eðpe�paÞ=brpe ¼ b�1qðpeÞrpe

and the Eq. (1) is converted to the linear equation

div h3
erwe

� �
¼ k

@

@x1
weheð Þ; in X; ð4Þ

where k = 6gv/b and we = qa on the boundary. In order to get zero boundary condition we introduce ue = we � qa. In this nota-
tion the Eq. (4) is

div h3
erue

� �
� k

@

@x1
heueð Þ ¼ kqa

@he

@x1
; in X; ð5Þ

where ue = 0 on the boundary.
The friction force Fe ¼ ðFe

1; F
e
2Þ at the surface x3 = 0 is given by

Fe ¼
Z

X

1
2

heðxÞrpeðxÞ þ
gv

heðxÞ
dx: ð6Þ

The force which is needed to run the surface (e.g. a bearing) is Fe
1. Using the transformation (3)

rpe ¼
b

we
rwe ¼

b
ue þ qað Þrue:

Hence

Fe ¼
Z

X

1
2

b
ue þ qað Þherue þ

gv
he

dx: ð7Þ

Another important quantity is the load carrying capacity Le, which is given by

Le ¼
Z

X
pe dx ¼

Z
X

pa þ b ln
we

qa
dx: ð8Þ

For small values of e (i.e. the roughness scale is much smaller than the global scale) the distance between the surfaces, he,
is rapidly oscillating. This means that a direct numerical treatment of (5) will require an extremely fine mesh to resolve the
surface roughness. One approach is then to do some type of averaging. The field of mathematics which handles this type of
averaging is known as homogenization, (see e.g. Cioranescu & Donato, 1999 or Jikov et al., Jikov, Kozlov, & Oleinik, 1994). The
main idea in homogenization is to prove that there exists a p such that pe ? p as e ? 0 and that p solves a so called homog-
enized equation. This implies in turn that p may be used as an approximation of pe for small values of e . Moreover, by ana-
lyzing the convergence of (pe) and (rpe) we are also able to find approximations of Le and Fe for small values of e. In this
paper we derive the homogenized equation corresponding to Eq. (5). We also prove convergence results for the friction force
and the load carrying capacity.

Let us now conclude the introduction by giving a short guide to the literature: In the case of an incompressible fluid there are
numerous works where homogenization has been used to analyze the effects of surface roughness in hydrodynamic lubrica-
tion. Indeed, the Eq. (1) with a constant q was homogenized in Wall (2007) by using two-scale convergence, by G-convergence
in Chambat, Bayada, and Faure (1988) and by the formal method of multiple scale expansions in Bayada and Faure (1989) and
Kane and Bou-Said (2004). The case of several different length scales (both roughness and texture) was analyzed in Almqvist,
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