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Abstract    
Lagrangian Coherent Structures (LCS) of tandem wings hovering in an inclined stroke plane is studied using Immersed-

Boundary Method (IBM) by solving two dimensional (2D) incompressible Navier-Stokes equations. Coherent structures re-
sponsible for the force variation are visualized by calculating Finite Time Lyapunov Exponents (FTLE), and vorticity contours. 
LCS is effective in determining the vortex boundaries, flow separation, and the wing-vortex interactions accurately. The effects
of inter-wing distance and phase difference on the force generation are studied. Results show that in-phase stroking generates 
maximum vertical force and counter-stroking generates the least vertical force. In-phase stroking generates a wake with swirl, 
and counter stroking generates a wake with predominant vertical velocity. Counter stroking aids the stability of the body in 
hovering. As the hindwing operates in the wake of the forewing, due to the reduction in the effective Angle of Attack (AoA), the 
hindwing generates lesser force than that of a single flapping wing. 
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1  Introduction 

Vortex dynamics and flow separation at high Angle 
of Attack (AoA) play a significant role in the aerody-
namics of insects, birds, and Micro Aerial Vehicles 
(MAVs). Force generation in flapping flight is coupled 
to the existence of Leading Edge Vortex (LEV)[1], mo-
mentum transfer, and entrainment of surrounding fluid 
by counter-rotating vortices. As a result, the identifica-
tion and the analysis of vortex structures become sig-
nificant. Shyy and Liu[2] gave a comprehensive review of 
the aerodynamics of flapping wings. Most of the vortex 
feature identification techniques like Q and lambda cri-
teria[3] require a user-defined, preselected threshold to 
define the boundaries of vortices[4]. By applying con-
cepts of dynamical systems theory to fluid motions, 
Haller and Yuan[5] proposed the Finite-Time Lyapunov 
Exponent (FTLE) fields to visualize the Lagrangian 
Coherent Structures (LCS). Haller and Peacock[6] re-
viewed LCS and its application to geophysical flows. 
Based on the work of Haller[5,7], Shadden et al.[8] pre-
sented an improvised definition of LCS as a ridge of 
FTLE field. Deformation tensor of the fluid is calculated 
over a finite time interval, and the maximum eigenvalue 

of the tensor represents the ridges of FTLE. LCS are the 
ridges of FTLE subjected to an additional hyperbolicity 
condition[9] to nullify the flux across the boundaries of 
the structures. FTLE obtained by integrating forward in 
time quantifies the separation between two nearby par-
ticles over the time interval. FTLE ridges, therefore, are 
curves along which particles are most prone to deviate 
from one another[10]. The ridges are called repelling LCS 
analogous to stable manifolds in dynamical systems 
theory. In contrast, if the integration is performed 
backward in time, then the ridges attract two particles 
which are separated by a distance in the beginning. The 
ridges are analogous to unstable manifolds and are 
called attracting LCS. 

In the past decades, LCS have been utilized to 
visualize vortex structures in diverse fields. Peng and 
Dabiri[11] investigated the wake dynamics of both 
swimming and flying animals by examining both repel-
ling and attracting LCS. Brunton and Rowley[12] used 
LCS to visualize vortical structures in the wake of a flat 
plate undergoing pitching and plunging. Wan et al.[13] 
studied the wake vortices in a plate undergoing harmonic 
and non-harmonic pitching and plunging using back-
ward FTLE ridges. Eldredge and Chong[10] studied fluid 
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transport and coherent structures of translating and flap-
ping wings, and compared the change in the vortical 
structures for both rigid and exible wings. Yang et al.[14] 
visualized the repelling and attracting LCS of a starting 
vortex ring generated by a thin circular disk. Their re-
sults revealed a flux window between the attracting and 
repelling structures which entrains the shear flow into a 
vortex. Recently, Rosti et al.[15] performed Direct Nu-
merical Simulation (DNS) of the flow around a pitching 
airfoil at high Reynolds number and visualized Kel-
vin-Helmholtz instabilities by employing backward 
FTLE ridges. 

Dragon flies are one of the highly manoeuvrable 
flyers with independently moving fore- and hind wings. 
Lan and Sun[16] solved 2D incompressible Navier-Stokes 
equations on moving overset grids to study hovering 
elliptical foils at 0˚, 90˚, and 180˚ phase differences. 
Wang and Russell[17] proposed an idealized kinematics 
mimicking dragonfly kinematics and studied the power 
requirements in a dragonfly hovering. They found that 
counter-stroking utilizes minimal power and generates 
sufficient lift to keep an insect aloft. Specific power 
consumption in hovering reduces with elastic storage in 
the muscles (Shen and Sun[18]). Usherwood et al.[19] used 
robotic wing experiments to study the vorticity dynam-
ics of a dragonfly flight and proved that a dragonfly 
employs wing phasing to remove swirl from the wake 
and improves the aerodynamic efficiency. Xiang et al.[20] 
performed a parametric analysis of corrugated tandem 
wings, and their results show that lift-drag ratio for the 
wings is only marginally affected by the corrugations. 
Broering and Lian[21] studied tan tandem wings pitching 
and plunging in a vertical plane, and showed that both 
inter-wing distance and wing phasing can be used to 
control the force generation. Most of the past studies 
have focused on tandem wings pitching and plunging in 
a vertical plane. Recently, Broering and Lian[22] ex-
tended the work to 3D and showed that at low Reynolds 
number, 2D simulations reasonably predict the unsteady 
mechanisms of force generation. 

However, for the LCS, the effects of inter-wing 
distance and wing phasing on force generation have not 
been studied for systems mimicking dragonfly kine-
matics. In this paper, we study a virtual tandem flapping 
wing model performing idealized dragonfly kinematics 
in a quiescent fluid. Velocity fields are obtained by 
solving incompressible 2D Navier-Stokes equation us-

ing immersed boundary method. Backward FTLE ridges 
are used in conjunction with vorticity contours to study 
the effect of phase difference and inter-wing distance on 
the aerodynamics. 

2  Governing equations and the numerical 
method 

2.1  Immersed boundary projection method  
Immersed boundary projection method proposed 

by Taira and Colonius[23] is used in the present study. 
Incompressible 2D Navier-Stokes equations are solved 
on a cartesian grid called Eulerian grid, D, and a set of 
discrete Lagrangian points, ξk, represent the surface of 
the body, B. 

The governing equations are: 
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where x ∈ D and ξ(s, t) ∈ B. The boundary B, is param-
eterized by s, and moves at the velocity, uB(ξ(s, t)). 
Staggered grid finite difference formulation is used to 
discretize the above equations with pressure at the center 
of the cell and velocity fluxes on the cell faces. Explicit 
second order Adams-Bashforth scheme is used to dis-
cretize the convective terms and implicit Crank- 
Nicholson scheme is used to discretize the viscous terms. 
The discretization yields a formal accuracy of second 
order in space and first order in time. 
 
2.2  FTLE calculation  

If x(t) represents fluid particles initialized over the 
flow field at a time t, u(x,t) represents the time de-
pendent velocity, and x(t + T) represents the position of 
the particles after a time T, the trajectory of a fluid par-
ticle is obtained by: 
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An in finitesimal separation, δx, at the initial time t 
changes to δx(t + T) by the relation: 
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where ( )t T
tφ
+ x∇ represents the deformation gradient 
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