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Abstract 
The flow patterns and wake structures behind a pitching airfoil in an un-bounded domain have been studied extensively. In 

contrast, the flow phenomena associated with a pitching airfoil near a solid boundary have not been adequately studied or 
reported. This paper aims at filling this research gap by considering the flow confinement effects on the flow pattern around a 
pitching airfoil. To achieve this goal, the flow fields around a flapping airfoil in un-bounded, bounded and semi-bounded do-
mains are studied and compared. Numerical simulations are carried out at a fixed Reynolds number, Re = 255, and at a fixed 
oscillation frequency corresponding to St = 0.22. An accurate immersed boundary method is employed to calculate the unsteady 
flow fields around the airfoil at various flapping amplitudes. It is argued that two flow mechanisms, here called “the interaction 
effect” and “the induced reverse flow effect” are responsible for the variations of the flow field due to the presence of a nearby 
solid boundary. 
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1  Introduction 

Locomotion, by means of flapping, is an important 
biological mechanism for flying and swimming. Scien-
tists, engineers and biomechanical researchers have all 
been interested in the phenomena associated with the 
flapping wings. It has been found, for example, that the 
flapping mechanism is more efficient, as compared to 
the classical fixed wing flight mechanism, at low Rey-
nolds numbers[1]. 

The flow field around a flapping airfoil is very 
complex due to the transient discontinuous interactions 
between the generated vortices. The vortical flow 
structures behind a pitching airfoil in an un-bounded 
domain have been studied extensively using theoreti-
cal[1,2], experimental[3–5] and numerical[6–10] methods. A 
review of research activities in this field has been pro-
vided by Hosseinjani and Ashrafizadeh[11] who have also 
studied the wake structure and thrust/lift generation of a 
pitching airfoil at low Reynolds number using a direct 
forcing Immersed Boundary Method (IBM).  

Previous studies on the flow fields around pitching 

airfoils in an un-bounded domain have made it possible 
to better understand and explain the effects of parame-
ters such as frequency, amplitude and flapping mode on 
the lift/thrust generation and momentum loss in the flow 
field. These studies have shown that there are distin-
guished flow regimes associated with different wake 
patterns. In particular, Kármán Vortex Street (KVS) and 
Reverse Kármán Vortex Street (RKVS) are two flow 
regimes that are associated with the enhancement of the 
adverse and favorable momentum transfer, respectively. 
In contrast to the KVS regime, which only provides a 
symmetric flow pattern, the flow patterns corresponding 
to RKVS regime can be either symmetric or 
un-symmetric[8]. 

The flow phenomena associated with a pitching 
airfoil near a solid boundary, however, have not been 
adequately studied or reported in the literature. 
Moryossef and Levy[12] studied the flow field around a 
plunging airfoil near the ground numerically. They re-
ported that when the airfoil was close to the ground, 
viscous flow effects were dominant only at low fre-
quencies and inviscid flow characteristics took over at 
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high frequencies. Gao and Lu[13] investigated the ground 
effects on hovering insects at Re = 100 and reported 
force enhancement, reduction and recovery as three 
important effects in that particular flow situation and 
Reynolds number. Moliana and Zhang[14] studied the 
aerodynamic behavior of an inverted airfoil with heav-
ing motion near the ground. They reported that three 
different flow regimes, i.e. flow regimes due to the 
ground effect, incidence effect and added mass effect, 
could be distinguished. Wu and Zhao[15] numerically 
studied a plunging airfoil near the ground. The high 
frequency oscillations and the small distance between 
the airfoil and the ground were considered responsible 
for the generation of thrust and lift forces.  

Van Truong et al.[16] investigated the aerodynamic 
forces and flow structures of a single flapping wing near 
the ground. Liang et al.[17] studied a hovering airfoil in 
ground effect. They assumed that the flow is inviscid and 
incompressible and reported that for the forced oscil-
lating airfoil, high heaving frequencies resulted in larger 
time-averaged values and amplitudes of the lift coeffi-
cient. Wu et al.[18] considered the flow field around a 
flapping insect near the ground. They reported that drag 
coefficient increased at low frequency and decreased at 
high frequency and the lift coefficient increased at both 
low and high frequencies and reduced at moderate fre-
quencies.  

In this paper, the vortex structure behind a sinu-
soidal pitching symmetric airfoil in a bounded domain 
(channel flow) is numerically studied over a range of 
oscillation amplitudes. In all previous studies only the 
ground effect, corresponding to flow near a single wall, 
was studied and no study regarding the flow field around 
a flapping airfoil in a channel was published to the best 
knowledge of the authors. Also, the effects of the oscil-
lation amplitude of a near the ground pitching airfoil on 
the wake structure and force coefficients have not yet 
been reported in the open literature. 

2  Governing equations 

The dimensionless forms of the governing equa-
tions for an incompressible flow in the computational 
domain Ω are: 

*
* * * 2 * *1. ,p

t Re
∂ ⎛ ⎞+ ∇ = −∇ + ∇ +⎜ ⎟∂ ⎝ ⎠

u u u u f         (1) 

*. 0,∇ =u                                        (2) 

where, u* is the dimensionless fluid velocity vector, p* is 
the dimensionless pressure and f* is the dimensionless 
external momentum source used to impose the no-slip 
boundary condition. Also, Re = u0L0/v, is the Reynolds 
number, where u0 and L0 are the problem-dependent 
velocity and length scales, respectively and v is the ki-
nematic viscosity of the fluid. 

3  The numerical solution approach 

3.1  The immersed boundary treatment 
An iterative direct forcing immersed boundary 

methods, proposed by Ji et al.[19], is implemented here. 
One important feature of this method is that the pressure 
and the source term are calculated simultaneously in 
each time step. The method using two types of nodal 
points is in the discrete computational domain. Fixed 
background points are called the Eulerian points (Eu 
points) and the possibly moving points, which define the 
immersed boundary, are called the Lagrangian points (IB 
points). The variables at Eu and IB points are related via 
discrete delta functions. 

Two operators, I(φ) and D(Φ), are defined which 
represent the interpolation and distribution operators 
respectively[19]. The parameter φ represents variables 
such as u*, p*, f*, at the Eu points, and the parameter Φ 
indicates the variables at IB point, i.e. U*, P*, F*. Using 
the interpolation operator, any variable at an IB point, i.e. 
Φ(XIB), can be expressed as: 

2
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∈
= = − Δ∑ x

X x x X        (3) 

where gh represents a set of Cartesian grid points at both 
sides of IB point, XIB, here called the active grid points. 
Non-dimensional coordinates XIB = (XIB, YIB) and  
x = (x, y) represent IB and Eu points, respectively and Δx 
is the non-dimensional uniform Cartesian grid size. The 
discrete delta function (δ) is similar to the function used 
in Ref. [20].  

Likewise, using the distribution operator, any 
variable at an Eu point, i.e. φ(x), can be expressed as: 

IB IB IB
IB 1
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where, Nb is the total number of IB points and  
ΔVIB = Δx × ΔSIB is the discrete volume (cell area in 2D) 
around the IB point and ΔSIB is the distance between any 
two consecutive IB points. 
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