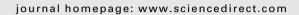
Journal of King Saud University - Science xxx (2017) xxx-xxx

Contents lists available at ScienceDirect

Journal of King Saud University - Science



Original article

Some new Hermite-Hadamard type inequalities for *MT*-convex functions on differentiable coordinates

P.O. Mohammed

Department of Mathematics, College of Education, University of Sulaimani, Sulaimani, Iraq

ARTICLE INFO

Article history: Received 13 May 2017 Accepted 29 July 2017 Available online xxxx

2010 Mathematics Subject Classification:

26D15

26A51

26A33 26A42

ABSTRACT

In this paper, we introduce the notion of MT-convex functions on co-ordinates and establish some new integral inequalities of Hermite-Hadamard type for MT-convex functions on co-ordinates on a rectangle Δ in the plane \mathbb{R}^2 .

© 2017 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let us recall some definitions of various convex functions that are known in the literature.

Definition 1.1 (*Guo et al., 2016; Sarikaya et al., 2016*). A function $f: I \subseteq \mathbb{R} \to \mathbb{R}$ is said to be convex on the interval I, if for all $x, y \in I$ and $t \in (0, 1)$ it satisfies the following inequality:

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y).$$
 (1.1)

Definition 1.2 (*Tunç et al., 2013*; *Park, 2015*). A function $f: I \subseteq \mathbb{R} \to \mathbb{R}$ is said to be *MT*-convex on *I*, if it is nonnegative and for all $x, y \in I$ and $t \in (0, 1)$ it satisfies the following inequality:

$$f(tx + (1-t)y) \le \frac{\sqrt{t}}{2\sqrt{1-t}}f(x) + \frac{\sqrt{1-t}}{2\sqrt{t}}f(y).$$
 (1.2)

Example of such functions are:

(1) The functions $f, g: (1, \infty) \to \mathbb{R}$, where

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

E-mail address: pshtiwansangawi@gmail.com

$$f(x) = x^p$$
 and $g(x) = (1+x)^p$, $p \in \left(0, \frac{1}{1000}\right)$

(2) The function $h: \left[1, \frac{3}{2}\right] \to \mathbb{R}$, where

$$h(x) = (1 + x^2)^q, \quad q \in (0, \frac{1}{1000}).$$

Notice that these functions are not convex.

Definition 1.3 Guo et al., 2016. If (X, \mathcal{A}) is a measurable space, then $f: X \to \mathbb{R}$ is measurable if $f^{-1}(B) \in \mathcal{A}$ for every Borel set $B \in \mathcal{B}(\mathbb{R})$. A function $f: \mathbb{R}^n \to \mathbb{R}$ is Lebesgue measurable if $f^{-1}(B)$ is a Lebesgue measurable subset of \mathbb{R}^n for every Borel subset B of \mathbb{R} .

Let us now consider a formal definition for co-ordinated convex functions:

Definition 1.4 (*Dragomir et al., 2000; Dragomir, 2001*). A function $f: \Delta \to \mathbb{R}$ is said to be convex on the co-ordinates on $\Delta = [a,b] \times [c,d] \subseteq \mathbb{R}^2$ with a < b and c < d if for all $t,\lambda \in (0,1)$ and $(x,y),(z,w) \in \Delta$ satisfies the following inequality:

$$f(tx + (1 - t)z, \lambda y + (1 - \lambda)w) \le t\lambda f(x, y) + t(1 - \lambda)f(x, w) + (1 - t)\lambda f(z, y) + (1 - t)(1 - \lambda)f(z, w).$$
(1.3)

http://dx.doi.org/10.1016/j.jksus.2017.07.011

1018-3647/© 2017 Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article in press as: Mohammed, P.O., Journal of King Saud University - Science (2017), http://dx.doi.org/10.1016/j.jksus.2017.07.011

2

Definition 1.5 Samko et al., 1993. The incomplete beta function is defined by

$$B_x(a,b) = \int_0^x z^{a-1} (1-z)^{b-1} dz, \quad a,b > 0.$$

For z=1, the incomplete beta function coincides with the complete beta function.

Throughout this paper we denote by $L_1(\Delta)$ the set of all Lebesgue integrable functions on Δ as indicated by the authors in Guo et al. (2016). Some integral inequalities of Hermite-Hadamard type for co-ordinated convex functions on the rectangle in the plane \mathbb{R}^2 may be recited as follows:

Theorem 1.1 (*Dragomir et al., 2000; Dragomir, 2001, Theorem 2.2*). Let $f: \Delta = [a,b] \times [c,d] \subseteq \mathbb{R}^2 \to \mathbb{R}$ be convex on the co-ordinates on Δ with a < b and c < d. Then

$$\begin{split} f\left(\frac{a+b}{2},\frac{c+d}{2}\right) &\leqslant \frac{1}{2} \left[\frac{1}{b-a} \int_a^b f\left(x,\frac{c+d}{2}\right) dx \right. \\ &\left. + \frac{1}{d-c} \int_c^d f\left(\frac{a+b}{2},y\right) dy \right] \\ &\leqslant \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x,y) dy dx \\ &\leqslant \frac{1}{4} \left[\frac{1}{b-a} \left(\int_a^b f(x,c) dx + \int_a^b f(x,d) dx\right) \right. \\ &\left. + \frac{1}{d-c} \int_c^d \left(\int_c^d f(a,y) dx + \int_c^d f(b,y) dx\right) \right] \\ &\leqslant \frac{1}{4} [f(a,c) + f(b,c) + f(a,d) + f(b,d)]. \end{split}$$

Theorem 1.2 Guo et al., 2015, Theorem 2.1. Let $f: \Omega \subseteq \mathbb{R}^2 \to \mathbb{R}$ be a twice partial differentiable mapping on Ω^o (the interior of Ω) and let $\Delta = [a,b] \times [c,d] \subseteq \Omega^o$ with a < b,c < d and $\frac{\partial^2 f}{\partial x \partial y} \in L_1(\Delta)$. If $\left|\frac{\partial^2 f}{\partial x \partial y}\right|^q$ is convex on the co-ordinates on Δ and $q \geqslant 1$, then the following inequality holds:

$$|I(f)| \le \frac{1}{4} \left(\frac{1}{9}\right)^{\frac{1}{q}} \{g_q(1,2,2,4) + g_q(4,2,2,1) + g_q(2,1,4,2) + g_q(2,4,1,2)\},$$

where

$$\begin{split} I(f) &= \frac{16}{(b-a)(d-c)} \left[f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) - \frac{1}{d-c} \int_c^d f\left(\frac{a+b}{2}, y\right) dy \right. \\ &\left. - \frac{1}{b-a} \int_a^b f\left(x, \frac{c+d}{2}\right) dx + \frac{1}{(b-a)(d-c)} \int_c^d \int_a^b f(x, y) dx \, dy \right], \end{split}$$

and

$$\begin{split} g_{q}(r_{1},r_{2},r_{3},r_{4}) &= \left[r_{1}\big|f_{xy}(a,c)\big|^{q} + r_{2}\big|f_{xy}(a,d)\big|^{q} + r_{3}\big|f_{xy}(b,c)\big|^{q} \right. \\ &\left. + r_{4}\big|f_{xy}(b,d)\big|^{q}\big|^{\frac{1}{q}}. \end{split}$$

For more information on integral inequalities of the Hermite-Hadamard type for various kinds of convex functions, the reader is referred to the recently published papers (Park, 2013; Guo et al., 2016; Meftah and Boukerrioua, 2015; Xi and Qi, 2015; Bai et al., 2016), and the closely related references therein.

In this paper, we will establish more integral inequalities of the Hermite-Hadamard type for MT-convex functions on the coordinates on a rectangle Δ in the plane \mathbb{R}^2 .

2. A definition and a lemma

Motivated by Definitions 1.1 and 1.3, we introduce the notion of "co-ordinated *MT*-convex function".

Definition 2.1. We say that a function $f: \Delta \to \mathbb{R}$ is MT-convex on the co-ordinates on $\Delta = [a,b] \times [c,d] \subseteq \mathbb{R}^2$ with a < b and c < d, if it is nonnegative and for all $t, \lambda \in (0,1)$ and $(x,y), (z,w) \in \Delta$ it satisfies the following inequality:

$$f(tx + (1-t)z, \lambda y + (1-\lambda)w) \leqslant \frac{\sqrt{t\lambda}}{4\sqrt{(1-t)(1-\lambda)}} f(x,y) + \frac{\sqrt{t(1-\lambda)}}{4\sqrt{\lambda(1-t)}} f(x,w) + \frac{\sqrt{\lambda(1-t)}}{4\sqrt{t(1-\lambda)}} f(z,y) + \frac{\sqrt{(1-t)(1-\lambda)}}{4\sqrt{t\lambda}} f(z,w). (2.1)$$

Now, we give an example to show that a function can be *MT*-convex on the co-ordinates on Δ without being convex on the co-ordinates on Δ . The function $f(x,y):(1,\infty)\times(1,\infty)\to\mathbb{R}$, where

$$f(x,y) = x^c + y^c$$
 for $c \in \left(0, \frac{1}{1000}\right)$

is MT-convex on the co-ordinates on $\Delta=(1,\infty)\times(1,\infty)$ while this is not convex on the co-ordinates on $\Delta.$

In order to prove our main results, we need the following lemma

Lemma 2.1. Let $f: \Omega \subseteq \mathbb{R}^2 \to \mathbb{R}$ be a twice partial differentiable mapping on Ω^o and let $\Delta = [a,b] \times [c,d] \subseteq \Omega^o$ with a < b,c < d and $\frac{\partial^2 f}{\partial x \partial v} \in L_1(\Delta)$. Then the following equality holds:

$$\begin{split} I(f) &:= \frac{16}{(b-a)(d-c)} \left[f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) - \frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) dy \right. \\ &\left. - \frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) dx + \frac{1}{(b-a)(d-c)} \int_{c}^{d} \int_{a}^{b} f(x, y) dx \, dy \right] \\ &= \int_{0}^{1} \int_{0}^{1} t \, \lambda f_{xy} \left(\frac{t}{2} a + \left(1 - \frac{t}{2}\right) b, \frac{\lambda}{2} c + \left(1 - \frac{\lambda}{2}\right) d\right) dt \, d\lambda \\ &\left. + \int_{0}^{1} \int_{0}^{1} t \, \lambda f_{xy} \left(\left(1 - \frac{t}{2}\right) a + \frac{t}{2} b, \left(1 - \frac{\lambda}{2}\right) c + \frac{\lambda}{2} d\right) dt \, d\lambda \right. \\ &- \int_{0}^{1} \int_{0}^{1} t \, \lambda f_{xy} \left(\frac{t}{2} a + \left(1 - \frac{t}{2}\right) b, \left(1 - \frac{\lambda}{2}\right) c + \frac{\lambda}{2} d\right) dt \, d\lambda \\ &- \int_{0}^{1} \int_{0}^{1} t \, \lambda f_{xy} \left(\left(1 - \frac{t}{2}\right) a + \frac{t}{2} b, \frac{\lambda}{2} c + \left(1 - \frac{\lambda}{2}\right) d\right) dt \, d\lambda . \end{split}$$

Proof. By integration by parts, we have

$$\begin{split} &\int_{0}^{1} \int_{0}^{1} t \, \lambda f_{xy} \left(\frac{t}{2} a + \left(1 - \frac{t}{2} \right) b, \frac{\lambda}{2} c + \left(1 - \frac{\lambda}{2} \right) d \right) dt \, d\lambda \\ &= \frac{4}{(b-a)(d-c)} \left[f \left(\frac{a+b}{2}, \frac{c+d}{2} \right) - \int_{0}^{1} f \left(\frac{a+b}{2}, \frac{\lambda}{2} c + \left(1 - \frac{\lambda}{2} \right) d \right) d\lambda \\ &- \int_{0}^{1} f \left(\frac{t}{2} a + \left(1 - \frac{t}{2} \right) b, \frac{c+d}{2} \right) dt + \int_{0}^{1} \int_{0}^{1} f \left(\frac{t}{2} a + \left(1 - \frac{t}{2} \right) b, \frac{\lambda}{2} c + \left(1 - \frac{\lambda}{2} \right) d \right) dt \, d\lambda \right] \\ &= \frac{4}{(b-a)(d-c)} \left[f \left(\frac{a+b}{2}, \frac{c+d}{2} \right) - \frac{2}{d-c} \int_{\frac{c+d}{2}}^{d} f \left(\frac{a+b}{2}, y \right) dy \right. \\ &- \frac{2}{b-a} \int_{\frac{b+b}{2}}^{b} f \left(x, \frac{c+d}{2} \right) dx + \frac{4}{(b-a)(d-c)} \int_{\frac{c+d}{2}}^{d} \int_{\frac{b+b}{2}}^{b} f(x,y) dx \, dy \right]. \end{split}$$

Similarly, we find

Download English Version:

https://daneshyari.com/en/article/7216603

Download Persian Version:

https://daneshyari.com/article/7216603

<u>Daneshyari.com</u>