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Abstract 

We examined wave phenomena pertinent to water in a rotating, laterally oscillating cylindrical container. In particular, we measured the 
time-dependent dynamic water pressure and pressure change by fast Fourier transform analysis. The swirling of water in the container had 
three frequency components; the frequency responses of each frequency component are reported herein. When swirling occurs in a rotating 
cylindrical container, it was found that the wave rotating in the same direction as the rotation of the cylindrical container and the wave 
rotating in the opposite direction to the cylindrical container exist at the same time. The swirling direction was determined by the relationship 
of these magnitude. 
© 2018 Shanghai Jiaotong University. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Background 

Sloshing, which is severe liquid agitation in a container, is 
a consequence of externally applied oscillation to the liquid. 
This is problematic in petroleum tanks and liquefied natural 
gas tankers; for example, the aftereffect of an earthquake or 
rolling tankers. Sloshing may lead to swirling [1] , wherein a 
free surface rotates around the central axis of an axisymmetric 
container. Ibrahim [2] reported the theoretical, experimental, 
and numerical research pertinent to sloshing. 

The stability and control of a rocket (or spacecraft) de- 
pends on swirling and other fluid dynamic behavior. Swirling 

is extremely dangerous in heavily fuel-laden rockets and mis- 
siles because it diverts trajectory. Yam et al. [3] investigated 

the stability of a spinning axisymmetric rocket exhibiting dis- 
sipative internal fluid motion. Bauer and Eidel [4] and Zhang 

et al. [5] examined free-surface oscillations in a slowly spin- 
ning cylindrical container partially filled with a viscous fluid. 
Ohaba et al. [6] investigated the frequency response of a liq- 
uid surface in a rotating, laterally oscillating cylindrical con- 
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tainer using a capacitance wave-height meter. These studies 
indicate that cylindrical container rotation stabilizes swirling; 
nevertheless, detailed experiments have not yet been con- 
ducted. 

In this study, we measure the time-dependent dynamic 
pressure of water in a rotating, laterally oscillating cylindri- 
cal container. We verified that the time-dependent dynamic 
pressure is proportional to free surface displacement from 

our previous measurements [7] . Moreover, we investigated the 
frequency components of swirling through fast Fourier trans- 
form (FFT) analysis of the time-dependent dynamic pressure 
change. 

2. Experimental configuration 

Figs. 1 and 2 show a schematic of the experimental appa- 
ratus and a cylindrical container, respectively. The cylindrical 
container is composed of Plexiglas (99 and 200 mm inner di- 
ameter and height, respectively). The rotating cylindrical con- 
tainer is connected to a motor fixed to the oscillating table. 
The table sinusoidally oscillates in the horizontal direction. 
Therefore, the cylindrical container laterally oscillates while 
rotating. We embedded the pressure sensor (12 mm above the 
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Fig. 1. Experiment apparatus. 

Fig. 2. Cylindrical container. 

bottom wall) in the inner wall of the cylindrical container 
( Fig. 2 ). We measured the fluid dynamic pressure over the 
course of 50 oscillations of forcing frequency f . We increased 

f in increments of 0.01 Hz and measured the fluid dynamic 
pressure as previously described. The fluid dynamic pressure 
fluctuates when sloshing occurs. In one period of lateral oscil- 
lation of the cylindrical container, the difference between the 
maximum and minimum pressure is �P , measured 50 times 
for each f . We varied the forcing frequency f from 1.0 to 

5.0 Hz. The amplitude of the lateral oscillation a = 1 . 0 mm, 
the rotating frequency of the cylindrical container � = 1 . 0 Hz, 
and the water depth h = 50 mm. 

3. Theoretical approach 

Researchers have only begun to theoretically investigate 
sloshing-pertinent phenomena in a rotating cylindrical con- 
tainer. As a first step toward understanding these phenomena, 
we analyzed sloshing in the absence of rotation. 

Fig. 2 shows our analytical model. Herein, we report z 
relative to the static level of the free surface. θ = 0 indicates 
the direction of the forced oscillation. R is the radius of the 
cylindrical container, and ω is the angular frequency of the 
oscillating table. Assuming irrotational flow and an incom- 
pressible fluid, the unsteady irrotational Bernoulli equation 

for z = η( r, θ, t ) is given by 

∂φ

∂t 
+ 

1 

2 

| ∇φ| 2 + 

p 

ρ
+ gz = a ω 

2 r cos θ sin ωt (1) 

where φ, p, ρ, and g are velocity potential, water pressure, 
water density, and gravitational acceleration, respectively. For 
infinitesimally small waves, we assumed negligible | ∇φ| 2 . Us- 
ing Eq. (1) , the kinematic and dynamic free surface conditions 
are given by the following equations: 
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Boundary conditions on the bottom and side walls are 
given by (

∂φ

∂z 

)
z= −h 

= 0 (4) 

(
∂φ

∂r 

)
r= R 

= 0 (5) 

We solved the continuity equation ∇ 

2 φ = 0 using bound- 
ary conditions ( 2 )–( 5 ). Eq. (6) describes the velocity poten- 
tial 
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(6) 

where m and n are natural numbers (m = 1 , 2, 3 · ··; n = 

1 , 2, 3 · ··) that represent vibrational modes. J m 

is the Bessel 
function of the first kind of order m. A mn , δmn , and εmn are 
arbitrary constants. Herein, k mn is a constant that satisfies the 
following equation: [

d 

dr 
J m 

( k mn r ) 

]
r= R 

= 0 (7) 

In addition, ω mn is the characteristic angular frequency given 

by 

ω mn = 

√ 

g k mn tanh ( k mn h ) (8) 

Eqs. (7) and ( 8 ) yield the resonant frequency, 2.97 Hz; R = 

49 . 5 mm and h = 50 mm. 
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