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Abstract 

In this paper, the dispersive coupled Whitham–Broer–Kaup (DCWBK) equation with time-dependent coefficients describing the propagation 
of the shallow water waves are obtained. The propagation of solitons and elliptic (or chirped) waves can be manipulated by suitable variations 
of the dispersion coefficient. Here, controllable transmission of the surface waves for soliton similariton pairs with the snoidal backgrounds 
is considered. It is found that, when the dispersion coefficient is taken as increasing, the velocity is increasing with the dispersion coefficient 
increasing. While this holds vice versa for the height of propagation wave. 
© 2017 Shanghai Jiaotong University. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction 

In recent years, the propagation of long surface water 
waves has many applications in the phenomena of physi- 
cal and engineering. Many completely integral models have 
been presented in bi-directional surface wave propagation, 
when the depth is small relative to the scale of the waves 
propagating, such as Boussinesq-types equations [1,2] , Broer–
Kaup system [3,4] , Boussinesq–Burgers equations [5] , The 
Kadomtsev–Petviashvili (KP) equation [6] and the Camassa–
Holm (CH) equation [7] . 

Since the nonlinear evolution equations (NLEEs) with time 
dependent, are called the nonautonomous systems [8–10] . The 
features dynamical of soliton from those systems are capable 
of all properties for a long distances with the negligible weak- 
lings [11] . 

Several kinds of methods in the literatures have been de- 
veloped to construct exact solutions to nonlinear differential 
equations are considered in [12–26] . 
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The dispersive long (surface) water waves with time- 
dependent coefficient are given by the equations: 

u t − u u x + v x + β(t ) u x x x = 0 , 

v t + (u v) x + α(t ) u x x x − β(t ) v x x x = 0 , (1) 

where u ( x, t ) is the field of horizontal velocity, v ( x, t ) is the 
height waves, α( t ) and β( t ) are the dispersion coefficients 
varying. If α( t ) and β( t ) are real constant and with represent 
different diffusion powers ( u xx and v xx ), Eq. (1) reduces to 

coupled Whitham–Broer–Kaup (CWBK) equation [27–33] . If 
α(t ) = 1 and β(t ) = 0, Eq. (1) becomes the modified Boussi- 
nesq equations [34,35] . 

In the present paper, we will search to find soliton and 

other exact solutions of the following Eq. (1) by using the 
unified method (UM) [36,37] . The dispersion coefficients are 
demonstrated to investigate the different geometrical struc- 
tures for polynomial and rational solutions. 

Now, we consider the coupled evolution equations: 

F k (x, t, u i 1 , u i 2 , . . . u i 1 t , u i 2 t . . . ) = 0, k, i j , = 1 , 2 . . . s (2) 

where F k are polynomials in their argument. When x , y and 

t are missing in Eq. (1) , then it has traveling wave solutions 
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(TWS) for single (TWS), we have 

G k (U i 1 , U i 2 , . . . U 

′ 
i 1 , U 

′ 
i 2 , . . . U 

′′ 
i 1 , U 

′′ 
i 2 . . . ) = 0, k, i j = 1 , 2, . . . s 

U 

′ = 

dU i 

dη
, η = κ x + 

∫ 

ω(t ) dt . (3) 

This paper is organized as follows. In Section 2 , the unified 

method is considered. Section 3 is devoted to find the explicit 
general wave solutions. The main results are illustrated via the 
solutions with figures. Finally, in Section 4 , some conclusions 
are given. 

2. The unified method 

In the present paper, we use the unified method (UM) 
[36,37] . This method is classified to be polynomials or ra- 
tional functions solutions, which follow as : 

To search for solutions of Eq. (1) , the unified method sug- 
gests that the solution is given by 

2.1. Polynomials solutions 

u j (η, t ) = 

n j ∑ 

i=0 

a i j (t ) ϕ 

i (η) , j = 1 , 2, . . . s 

(ϕ 

′ (η, t )) pk = 

j= pk ∑ 

j=0 

c j (t ) ϕ 

j (η) , p = 1 , 2, (4) 

where ϕ( η) is the auxiliary function, and a i j (t ) , c j (t ) are 
unknown parameters. 

In Eq. (1) for n j and k is determined from the leading anal- 
ysis and in this case the balance condition in the first and sec- 
ond Eq. (1) is read n 1 = n 2 = 2(k − 1) . The consistency con- 
dition relates the number of equations obtained by substituting 

Eq. (4) into (1) , (namely n 2 j ), the number of free parameters 
in polynomial and auxiliary functions (namely n 1 j ) and the 
integrability property of Eq. (3) . As Eq. (1) is completely in- 
tegrable, then consistency condition reads n 2 j − n 1 j ≤ m j . We 
mention that, when p = 1 , the solution of the auxiliary equa- 
tion gives rise to (explicit or implicit) solutions in elementary 

functions. While when p = 2 they give rise to explicit solu- 
tions in Jacobi-elliptic or periodic. 

2.2. Rational solutions 

To find the rational function solutions of Eq. (3) we assume 
that 

u j ( η, t ) = 

n ∑ 

i=0 

p i j ( t ) ϕ 

i ( η) / 

r ∑ 

i=0 

q i j ( t ) ϕ 

i ( η) , j = 1 , 2, . . . s 

(
ϕ 

′ ( η, t ) 
)pk = 

i= pk ∑ 

i=0 

c i ( t ) ϕ 

i ( η) , p = 1 , 2, (5) 

where p i j (t ) , q i j (t ) are arbitrary parameters, n , r and k are 
determined from the leading analysis. It is worth to mention 

that the balance conditions in this case be obtained as in 

the case of polynomial solutions but n is replaced by n − r. 
Here again, the condition for the existence of the solutions in 

Eq. (3) is determined from the consistency equation. Indeed, 
when k = 1 in the solution of the second equation in (5) was 
suggested to describe “a jet stream” or (wave pattern). 

Steps of computation: 
When substituting from Eq. (4) (or (5) ) into Eq. (3) , we 

get the principle equations and the following steps are done. 
1-Solve the principle equations. 
2-Solve the auxiliary equations. 
3-Find the exact solutions. 
4-Check that the solutions obtained satisfies Eq. (3) . 

3. Solutions of Eq. (1) 

The objective of this section is to construct the exact travel- 
ing wave solutions (TWS) of Eq. (1) by using the (UM). Un- 
der the varying dispersion is bounded functions, the propaga- 
tion of solitary, soliton, elliptical, chirped and periodic waves 
are obtained. 

Let us, we use the transformations u(x, t ) = 

U (η, t ) , v(x, t ) = V (η, t ) and η = κ x + 

∫ 
ω(t ) dt , where 

κ−1 and ω( t ) are designate the characteristic wave lengths 
and frequency. 

Thus Eq. (1) reduce to 

ω(t ) U 

′ + κ(U U 

′ + V 

′ ) + κ3 β(t ) U 

(3) = 0 , 

ω(t ) V 

′ + κ(V U ) ′ + κ3 
(
α(t ) U 

(3) − β(t ) V 

(3) 
) = 0 , (6) 

Here, we use the (UM) to find the polynomial and rational 
solutions: 

( i ) Propagation of solitary wave 
When p = 1 , n 1 = n 2 = 2 and k = 2, we obtain the soli- 

tary wave solution in polynomial function solution. 
In this case, we take Eq. (5) 

U (η, t ) = b 2 (t ) ϕ 

2 (η) + a 1 (t ) ϕ(η) + a 0 (t ) , 

V (η, t ) = b 2 (t ) ϕ 

2 (η) + b 1 (t ) ϕ(η) + b 0 (t ) , 

ϕ η = c 2 (t ) ϕ 

2 (η) + c 1 (t ) ϕ(η) + c 0 (t ) , (7) 

where Eq. (7) 3 is the auxiliary equation and a j ( t ), b j ( t ) and 

c i (t ) , i = 0, 1 , 2 are arbitrary parameters. 
From Eq. (7) into Eq. (6) , the solutions of Eq. (1) are 

given by 

u(x, t ) 

= 

−[ κα(t ) + 3 β(t ) 
(
κ3 β(t ) λ(t ) 2 

(
1 −3 sech 2 

(
1 
2 λ(t )( 

∫ 
ω(t ) dt + κx) 

))+ ω(t ) 
)
] 

3 κβ(t ) 
, 

v(x, t ) = 

α(t ) 
(
α(t ) + 3 κ2 β(t ) 2 λ(t ) 2 

(
3 sech 2 

(
1 
2 λ(t )( 

∫ 
ω(t ) dt + κx) 

) − 1 
))

9 β(t ) 2 
, 

(8) 

where 

a 0 (t ) 

= 

−[ 3 β(t ) 
(
κ3 

(
c 1 (t ) 2 + 8 c 0 (t ) c 2 (t ) 

)
β(t ) + ω(t ) 

)+ κα(t )] 

3 κβ(t ) 
, 

a 1 (t ) = −12κ2 c 1 (t ) c 2 (t ) β(t ) , (9) 
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