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Abstract 

The present paper deals with two reliable efficient methods viz. tanh-sech method and modified Kudryashov method, which are used to 
solve time-fractional nonlinear evolution equation. For delineating the legitimacy of proposed methods, we employ it to the time-fractional 
fifth-order modified Sawada–Kotera equations. As a consequence, we effectively obtained more new exact solutions for time-fractional 
fifth-order modified Sawada–Kotera equation. We have also presented the numerical simulations for time-fractional fifth-order modified 
Sawada–Kotera equation by means of three dimensional plots. 
© 2016 Shanghai Jiaotong University. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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1. Introduction 

Fractional calculus is a wide area of mathematics which 

offers derivatives and integrals of arbitrary orders. In the last 
few years, fractional calculus [1,2] has been broadly investi- 
gated due to their large functions in mathematics, physics and 

engineering similar to viscoelasticity, signal processing, elec- 
tromagnetism, fluid mechanics, electrochemistry and so forth. 
Fractional differential equations are extensively used in mod- 
eling of physical phenomena in various fields of science and 

engineering. For this reason, we need to develop new reliable 
and efficient process for the solution of fractional differential 
equations. 

We have considered here the time-fractional fifth-order 
modified Sawada–Kotera (mS–K) equation [3,4] 
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which is directly derived from the time-fractional fifth-order 
Sawada–Kotera (S–K) equation [5–7] 
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and time-fractional fifth-order Kaup–Kupershmidt (K–K) 
equation [8–10] 
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2 u x − 15 p u x u xx − 15 u u x x x + u x x x x x = 0, 0 < α ≤ 1 , 

by applying the Miura transformations. The time-fractional 
fifth-order modified Sawada–Kotera equation has the com- 
bined physical nature of both fractional S–K and K–K equa- 
tions. 

The present paper is dedicated to build the exact solitary 

solutions for time-fractional fifth-order mS–K equation utilis- 
ing fairly new techniques, in particular the tanh-sech method 

[5,11–13] and modified Kudryashov method [14,15] . To the 
best of knowledge of authors, no prior exploration work has 
been carried out using proposed methods for solving time- 
fractional fifth-order modified Sawada–Kotera equation. 

The remainder of this paper is organised as follows: defini- 
tions with properties of local fractional calculus [16–18] have 
been discussed in Section 2 . We explained the algorithm 

of proposed tanh-sech method and Kudryashov method in 

Section 3 . In Section 4 , the exact solitary wave solutions for 
the time-fractional fifth order mS–K equation are derived. In 

Section 5 , the natures of the solutions are examined by means 
of numerical simulation. The present paper concluded with 

Section 6 . 
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2. Local fractional derivative and its properties 

Definition 2.1. Let g(t ) ∈ C α(a, b) . Local fractional derivative 
of g(t ) of order α at t = t 0 is defined as [16–18] 
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Properties of local fractional derivative [16–19] 

I. If y(t ) = (g ◦ u)(t ) where u(t ) = h(t ) , then we have 
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II. If y(t ) = (g ◦ u)(t ) where u(t ) = h(t ) , then we have 
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3. Alogorithm of proposed methods 

3.1. Brief description of algorithm for the new proposed 

tanh-sech method 

In this section, the tanh-sech method [5, 11–13] has been 

used to find the exact solutions of Eq. (1.1) . The fundamental 
steps of the proposed method are illustrated as follows: 

Step 1: We consider the most general form of nonlinear 
fractional partial differential equations with two inde- 
pendent variables x and t given by 

G (u, u x , u xx , u x x x , ...D 

α
t u , ... ) = 0, 0 < α ≤ 1 (3.1.1) 

where G is a polynomial in u(x, t ) . It may be noted that 
in Eq. (3.1.1) some nonlinear term with higher order 
partial derivatives are included. 

Step 2: Let 

u(x, t ) = �(ξ ) , ξ = c 

(
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)
(3.1.2) 

be fractional complex transform [20–22] , which can be 
used for reducing Eq. (3.1.1) into nonlinear ordinary 

differential equation. Here c and v are arbitrary con- 
stants. 

By using the chain rule Eq. (2.1.3) [20,21] , we have 
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where σt is the fractal indexes [21,22] . Let us assume with- 
out loss of generality that σt = k , where k is a arbitrary 

constant. 

By applying Eq. (3.1.2) the Eq. (3.1.1) can be written as 

G (�, c�′ , c 2 �′′ , c 3 �′′′ , ..., −cv�′ , ... ) = 0. (3.1.3) 

Step 3: By tanh-sech method, the solution of 
Eq. (3.1.3) can be written as follows: 
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i . (3.1.4) 

Using homogenous balancing principle, equating nonlinear 
term and highest order derivative term of Eq. (3.1.3) , the 
value of n can be determined. 

In this method, we take tanh-sech method, let Y = tanh (ξ ) . 
Using chain rule, we obtain the derivatives of �(ξ ) , 
which are given as follows: 
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Similarly, the higher-order derivatives can be found. 
Step 4: Then by substituting Eq. (3.1.4) into 

Eq. (3.1.3) and making use of Eq. (3.1.5) followed 

by collecting all terms with the same degree of Y 

i 

(i = 0, 1 , 2, ... ) together, the Eq. (3.1.3) is transformed 

into an another polynomial in Y 

i (i = 0, 1 , 2, ... ) . 
Equating every coefficient of this polynomial to 

zero, we will get a set of algebraic equations for a i 

(i = 0, 1 , 2, ..., n) , v and c. 
Step 5: Solving the obtained algebraic systems in Step 

4 and in the same time substituting these constants a i 

(i = 0, 1 , 2, ..., n) , v and c into Eq. (3.1.4) , we can get 
the explicit solutions of Eq. (3.1.1) immediately. 

3.2. Brief description of algorithm for the new proposed 

modified Kudryashov method 

In this section, the modified Kudryashov method 

[14,15] has been used to find the exact solutions of Eq. (1.1) . 
The fundamental steps of the proposed method are illus- 

trated as follows: 

Step 1: We consider the most general form of nonlinear 
fractional partial differential equations with two inde- 
pendent variables x and t given by 

H (u, u x , u xx , u x x x , ...D 

α
t u , ... ) = 0, 0 < α ≤ 1 , (3.2.1) 

where H is a polynomial in u(x, t ) . It may be noted that 
in Eq. (3.2.1) some nonlinear term with higher order 
partial derivatives are included. 

Step 2: Let 

u(x, t ) = �(ζ ) , ξ = lx + 

γ t α

�(α + 1) 
. (3.2.2) 

be fractional complex transform [20–22] , which can be 
used for reducing Eq. (3.2.1) into nonlinear ordinary 

differential equation. Here l and γ are arbitrary con- 
stants. 
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