Accepted Manuscript

A new type of vibration isolator based on magnetorheological elastomer

Anil K. Bastola, Lin Li

PII: S0264-1275(18)30616-6

DOI: doi:10.1016/j.matdes.2018.08.009

Reference: JMADE 7307

To appear in: Materials & Design

Received date: 25 July 2018
Revised date: 2 August 2018
Accepted date: 3 August 2018

Please cite this article as: Anil K. Bastola, Lin Li, A new type of vibration isolator based on magnetorheological elastomer. Jmade (2018), doi:10.1016/j.matdes.2018.08.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A new type of vibration isolator based on

magnetorheological elastomer

Anil K. Bastola a, b and Lin Li a,1

^a School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50

Nanyang Avenue, Singapore 639798

^b Institute for Sports Research, Nanyang Technological University, 50 Nanyang Avenue,

639798, Singapore

Abstract

In this work, a new type of adaptive vibration isolator based on magnetorheological (MR)

elastomer (MRE) is presented. A new method was adopted to develop such an isolator

where both a magnetic field and a preload were applied simultaneously. The magnetic

attraction force was utilized to change the preload in the single degree of freedom (DOF)

system. The system has such a provision that when a magnetic field is applied the preload

would be automatically acting to the MR elastomer. In such a combined loading condition,

the natural frequency of a single DOF system promptly shifted to a higher frequency and the

stiffness of the MR elastomer was significantly increased. The stiffness of the MR elastomer

system was found to be increased as high as 730 times of its original stiffness when the

magnetic field of 520 mT was applied, which is a significantly higher augmentation than

those reported in the literature. The combined effect of the preload and the magnetic field

was profound because the magnetic interaction among the magnetic particles was

simultaneously boosted by both the magnetic field and the preloading effect. It is often a

large difficulty to generate a higher magnetic field in most of the MRE-based isolators. Our

study showed that when a suitable preload and a suitable magnetic field are applied

together, a highly tunable isolator system can be developed even with the application of a

relatively lower magnetic field strength.

Keywords: MR elastomer; isolator; preload; magnetic field

¹ Corresponding author.

E-mail address: mlli@ntu.edu.sg

1

Download English Version:

https://daneshyari.com/en/article/7216782

Download Persian Version:

https://daneshyari.com/article/7216782

<u>Daneshyari.com</u>