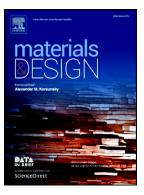
Accepted Manuscript

Liquid metal embrittlement in laser beam welding of Zn-coated 22MnB5 steel

M.H. Razmpoosh, A. Macwan, E. Biro, D.L. Chen, Y. Peng, F. Goodwin, Y. Zhou

PII: S0264-1275(18)30450-7

DOI: doi:10.1016/j.matdes.2018.05.065


Reference: JMADE 3965

To appear in: Materials & Design

Received date: 16 February 2018
Revised date: 25 May 2018
Accepted date: 29 May 2018

Please cite this article as: M.H. Razmpoosh, A. Macwan, E. Biro, D.L. Chen, Y. Peng, F. Goodwin, Y. Zhou, Liquid metal embrittlement in laser beam welding of Zn-coated 22MnB5 steel. Jmade (2017), doi:10.1016/j.matdes.2018.05.065

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Liquid Metal Embrittlement in Laser Beam Welding of Zn-Coated

22MnB5 Steel

M.H. Razmpoosh^{a*}, A. Macwan^b, E. Biro^a, D.L. Chen^c, Y. Peng^d, F. Goodwin^e, Y. Zhou^a

^aCentre for Advanced Materials Joining, Department of Mechanical & Mechatronics Engineering, University of

Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1

^bArcelorMittal Global Research, 1390 Burlington Street east, Hamilton, Ontario, Canada L8N 3J5

^cDepartment of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario,

Canada M5B 2K3e

^dCentral Iron & Steel Research Institute (CISRI), Beijing 100081, China

^eInternational Zinc Association, Durham, NC 27713, USA

Abstract

Despite frequent reports of liquid metal embrittlement (LME) during resistance spot welding, no work

has been done to investigate the LME sensitivity in laser beam welding (LBW) of advanced high strength

steels. The present study was therefore undertaken to reflect the LME sensitivity of Zn-coated 22MnB5 press-

hardening steel as a function of stress intensity and heat input during LBW. The results proved a direct relation

between the external load and LME susceptibility, where the threshold tensile stress of about 80% YS is

necessary to trigger the embrittlement. Electron backscatter diffraction (EBSD) in conjunction with electron

probe micro-analyzer (EPMA) results confirmed the intergranular penetration of Zn along the prior austenite

high-angle grain boundaries in upper-critical heat affected zone (UCHAZ). The presence of Zn over the

maximum Zn-solubility of austenite promotes α -Fe(Zn) transformation along the LME-crack which assists the

loss of ductility. The present findings provide an understanding of the mechanism of embrittlement in UCHAZ

and suggest solutions to mitigate the LME in LBW of boron steels.

Keywords: Liquid Metal Embrittlement: Laser beam welding: Press-hardening steel: Microstructure: Zn.

Corresponding author

Tel.: +12269783045

E-mail address: mhrazmpoosh@uwaterloo.ca (M.H. Razmpoosh)

1

Download English Version:

https://daneshyari.com/en/article/7216899

Download Persian Version:

https://daneshyari.com/article/7216899

<u>Daneshyari.com</u>