Accepted Manuscript

Formation mechanisms of Ti2AlC MAX phase on SiC-4H using magnetron sputtering and post-annealing

J. Nicolaï, C. Furgeaud, B.W. Fonrose, C. Bail, M.F. Beaufort

PII:	S0264-1275(18)30137-0
DOI:	doi:10.1016/j.matdes.2018.02.046
Reference:	JMADE 3713
To appear in:	Materials & Design
Received date:	24 December 2017
Revised date:	12 February 2018
Accepted date:	15 February 2018

Please cite this article as: J. Nicolaï, C. Furgeaud, B.W. Fonrose, C. Bail, M.F. Beaufort, Formation mechanisms of Ti2AlC MAX phase on SiC-4H using magnetron sputtering and post-annealing. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Jmade(2017), doi:10.1016/j.matdes.2018.02.046

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Formation mechanisms of Ti₂AIC MAX phase on SiC-4H using magnetron sputtering and post-annealing

J. Nicolaï,¹⁾ C. Furgeaud,¹⁾ B. W. Fonrose,²⁾ C. Bail,¹⁾ and M.F. Beaufort¹⁾

¹Institut Pprime, UPR 3346, Université de Poitiers, SP2MI-Boulevard 3, Téléport 2-BP 30179, 86962 Futuroscope

Chasseneuil Cedex, France

²CEMES-CNRS-UPR 8011, Université de Toulouse, 31055 Toulouse, France

Abstract

In the present work we focus on the mechanisms involved in Ti₂AlC MAX phase thin-film formation. The TiAl₂ thin-film was deposited by magnetron sputtering on a SiC-4H [0001] substrate. Samples were annealed at various temperatures (700-800°C) for various times and analysed by XRD and TEM. The epitaxial Ti₂AlC phase was formed as follows: $[0001]_{MAX}$ // $[0001]_{SiC}$ and $(11-20)_{MAX}$ // $(11-20)_{SiC}$ which is in a good agreement with thermodynamic considerations. The presence of TiC structures at the interface indicates that the formation of this structure is necessary to obtain Ti₂AlC. Moreover, the formation of a liquid AlSi alloy was highlighted due to the interdiffusion of Al and Si respectively from TiAl₂ and SiC during TiC formation. Finally, we assume that, during the cooling, the AlSi alloy separates and Al diffuses to the surface of the TiAl₂ layer leading to the formation of an Al-rich layer. The remaining Si reacts with Ti from TiAl₂ to form a Ti₅Si₃ layer following this epitaxial relation: $[0001]_{Ti2AIC}$ // $[0001]_{Ti5Si3}$ and $(11-20)_{Ti2AIC}$ //(3-210)_{Ti5Si3}. These mechanisms lead to the stacking of four different layers. Between 700 and 800 °C, the nature of the formation mechanism is not time-dependent. However, the kinetics of the reactions are both temperature and time dependent.

Keywords: MAX phase, thin film, epitaxy, TEM, Magnetron Sputtering

Introduction

 $M_{n+1}AX_n$ phases (n=1-3) are in a large class of nanolaminated materials. M is an early transition metal element, A is an Agroup element and X is either C or N [1-4]. For n=1, 2, 3 the MAX phases are called 211, 312 and 413 respectively due to the periodic arrangement of the structure: MX octahedrons with layers of the A element in a hexagonal structure. This particular arrangement gives the MAX phases a unique combination of metal and ceramic properties, opening the way to a large field of applications [5-7]. The Ti₃SiC₂ and Ti₂AIC MAX phases have been extensively studied due to these excellent properties which include irradiation resistance [8-9]. Several different techniques have been used to synthesize bulk MAX phases. Of these techniques, the most common is hot isostatic pressing (HIP) [10]; however, various techniques have been developed for the growth of MAX phase thin films using magnetron sputtering technology, either from elemental targets or from compound targets on various substrates [11-14]. As shown on our recent papers, the co-deposition of Ti and Al on SiC substrates leads, under specific annealing conditions [15-16], to the formation of Ti₃SiC₂ films. The use of Al is known to be helpful to the Download English Version:

https://daneshyari.com/en/article/7217258

Download Persian Version:

https://daneshyari.com/article/7217258

Daneshyari.com