Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/)

journal homepage: <www.elsevier.com/locate/matdes>

Unexpected ground-state structures and properties of carbon nitride C_3N at ambient and high pressures

Qinghua Wu ^a, Qianku Hu ^{a,b,}*, Yiming Hou ^a, Haiyan Wang ^a, Aiguo Zhou ^a, Libo Wang ^a, Guohua Cao ^c

^a School of Material Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China

^b State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China

^c School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China

HIGHLIGHTS

GRAPHICAL ABSTRACT

- Four stable C₃N phases were uncovered and pressure-induced phase transition were determined.
- Vickers hardness for the $C2/c$ C₃N can reach up to 86.9 GPa.
- Uncovered C_3N phases are semiconductors with diverse band gaps.
- Pressure-temperature phase diagram was established and high temperature can decrease synthesis pressures of C2/c C_3N .

article info abstract

Article history: Received 6 August 2017 Received in revised form 21 November 2017 Accepted 23 November 2017 Available online 24 November 2017

Keywords: Carbon nitride Phase transition First-principles calculations Hardness Phase diagram

Thermodynamically stable C_3N phases in the pressure range of 0–100 GPa are searched and calculated by ab initio evolutionary algorithm and density functional theory. Ground-state C_3N phase at ambient pressure is predicted to be a layered structure with Cmmm space group. The previously reported Fd3m phase exists only in the narrow pressure range of 6.1–7.4 GPa, which transforms into a $\overline{P3m1}$ phase at 7.4 GPa and then into a $\overline{R3m}$ phase at 40.7 GPa. The increasing pressure drives the $R\overline{3}m$ phase to a C2/c phase at 76.9 GPa. Dynamical and mechanical stabilities of C_3N phases are checked and confirmed by phonon dispersion and elastic constant calculations. It is diverse of the electronic properties of C₃N with Cmmm (zero band gap), $\overline{P3m1}$ (wide gap of 4.55 eV), $\overline{R3m}$ (wide gap of 4.54 eV) and $C2/c$ (narrow gap of 1.94 eV). The three-dimensional strong covalent $C2/c$ C₃N is superhard with high hardness of 79.5 and 86.9 GPa calculated by Chen and Gao models. Pressure-temperature phase diagram of C3N is firstly established and shows high temperature can significantly decrease synthesis pressures of C2/c phase, which gives a theoretical guidance for further experimental synthesis.

© 2017 Published by Elsevier Ltd.

1. Introduction

Searching for superhard materials (Vickers hardness $>$ 40 GPa) is not only of fundamental research interests on the understanding of hardness nature, but also of their wide technical applications in modern industry areas, such as wear-resistant coating, abrasives, polishing and cutting tools. The intrinsic superhard materials can be classified into

Corresponding author at: School of Material Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China. E-mail address: hqk@hpu.edu.cn (Q. Hu).

two groups [\[1\]](#page--1-0): a) light-element (B, C, N, and O) compounds or elementary substance (diamond) with short and strong covalent bonds [\[2\]](#page--1-0); b) compounds formed by transition metals and light elements [\[3,4\].](#page--1-0) The former group includes some well-established compounds, such as cubic-BN, B_6O , BC₅ and BC₂N [\[2,5,6\].](#page--1-0)

Except for the above light-element compounds, carbon nitride crystals with C_3N_4 stoichiometry have attracted more attentions since their hardnesses were predicted to be comparable to that of diamond [\[7\].](#page--1-0) Considering similar atomic radii and bonding characters between C and N atoms, it is undoubtedly logical that there should exist other stoichiometric carbon nitride compounds. Many efforts have been devoted to the studies of different stoichiometries in C-N system experimentally $[8-13]$ $[8-13]$ and theoretically $[7,14-20]$ $[7,14-20]$. For C_3N_4 stoichiometry, Dong et al. [\[14\]](#page--1-0) found the most stable form at ambient pressure should be Cc-C₃N₄ structure rather than the earlier proposed graphitic C_3N_4 structure. Recently the mechanical and electronic properties of two thermodynamically metastable C_3N_4 (monoclinic and tetragonal phases) were investigated [\[21\],](#page--1-0) whose structures are built by carbon replacing silicon in $m-Si_3N_4$ and $t-Si_3N_4$ respectively [\[22\].](#page--1-0) Pressurecomposition phase diagram of C-N system shows that the $CN₂$ stoichiometry with tetragonal $I\overline{4}2d$ symmetry becomes stable above 59 GPa [\[14\]](#page--1-0), agreeing with an earlier calculation [\[19\].](#page--1-0) In recent several years, CN stoichiometry has attracted particular interests due to the successful synthesis [\[8\],](#page--1-0) which is consistent with theoretical predictions [14–[16\].](#page--1-0)

Because N atoms in C-N compounds prefer to form $N₂$ molecules, it is a common phenomenon that the nitrogen content is low in the products of attempting to synthesize C_3N_4 stoichiometry [\[23,24\]](#page--1-0). Thus it is reasonable that some carbon-rich C-N phases should exist. A previous paper [\[25\]](#page--1-0) also confirmed that low-nitrogen C-N phases should be easier synthesized than C_3N_4 . Due to high carbon contents, C_3N stoichiometry has been paid more attentions in carbon-rich C-N phases. By a solvothermal process, graphitic C_3N powders were synthesized experi-mentally using CaCN₂ and C₂Cl₆ as starting materials [\[26\].](#page--1-0) Sun et al. also got some small C_3N particles by a low-temperature reaction [\[27\].](#page--1-0) Recently bulk C_3N flakes have been synthesized by thermolysis of m phenylenediamine under vacuum [\[13\].](#page--1-0) However the above obtained samples are of poor crystallinity, and meanwhile the atomic masses of C and N atoms are similar and small. Therefore it is a challenge by experimental measurements to completely resolve the crystal structure of the synthesized C₃N samples.

Theoretical calculations are a feasible method to predict the structures and properties of C_3N . The first theoretical work for C_3N was con-ducted by Mizuno [\[28\],](#page--1-0) in which a C_3N monolayer model is constructed by N atoms replacing one of four carbon atoms in a single graphite layer (graphene). Sandré et al. [\[29\]](#page--1-0) proposed four C_3N bulk structures, in which a flat C_3N model possesses the lowest energy at ambient pressure. Subsequently, one M2 structure [\[25\]](#page--1-0) with Pbam space group was calculated to be more stable at ambient pressure than the reported flat C_3N model in Ref. [\[29\]](#page--1-0). Later a C_3N model [\[30\]](#page--1-0) constructed from hexagonal BN was found to possess lower energy than the M2 structure. Recently, a C_3N model [\[17\]](#page--1-0) with $P6/mmm$ symmetry was constructed based on hexagonal B_3N_5 structure [\[31\].](#page--1-0) The $P6/mmm$ C₃N was calculated to be more energetically favorable at ambient pressure than all previously proposed structures. The above researches mainly focus on searching the ground-state structure of C_3N at ambient pressure. Superhard materials are dense phase with short bonds, which could be synthesized usually under high pressures. For high-pressure phase transition of C_3N , Hao et al. [\[17\]](#page--1-0) found when pressure is above 9 GPa, the $P6/mmm$ C₃N structure will transform into a $C222₁$ phase constructed from $C222_1 B_3N_5$ structure [\[31\].](#page--1-0)

The above predictions of new C_3N structures take a conventional method to construct structural models by replacing atoms in known phases. In recent years, several state-of-the-art global optimization packages, such as USPEX [32–[34\],](#page--1-0) CALYPSO [\[35\]](#page--1-0) and MUSE [\[36\],](#page--1-0) were developed to uncover structu res with minimum free energy under ambient or high pressures and have been successfully applied in various systems [\[37](#page--1-0)–40]. Using the particle swarm optimization technique as implemented in CALYPSO, Wei et al. uncovered a stable cubic $Fd\overline{3}m$ C3N phase. Though previously several calculations have been done, an extensive and systematical research is still essential to reveal the energetically stable C_3N phases at ambient and high pressures. In order to systematically investigate the structure evolution of C_3N under high pressures, thorough and careful searches for the structures of C_3N stoichiometry at ambient and high pressures (up to 100 GPa) were conducted in the present work by using the evolutionary algorithm USPEX. Four thermodynamically stable C₃N phases (Cmmm, $\overline{P3}$ m1, $\overline{R3}$) m and $C2/c$) are uncovered, and then their mechanical and electronic properties are investigated. In order to determine the phase boundaries, phase transition sequences and critical pressure points of C_3N are given, and especially a detailed pressure-temperature (P-T) phase diagram for C_3 N is established to guide next experimental syntheses.

2. Computational methods

The fixed-composition searches for C_3N ground-state structures were performed using the ab initio evolutionary algorithm as implemented in the USPEX package [\[32](#page--1-0)–34]. Variable-cell structure searches for C_3N with one to four formula units (f.u.) were performed at 0, 10, 30, 60 and 100 GPa without any symmetry constraints. The first-generation structures were randomly obtained. Then each subsequent generation was generated from the lowest-enthalpy 60% structures of the last generation by applying variation operators including heredity (45%), random (25%), lattice mutation (20%), and atomic permutation (10%). Structural relaxations of the C_3N structures created by USPEX were carried out using density functional theory within the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional as implemented in the VASP code [\[42\]](#page--1-0). All electron projector-augmented wave method (PAW) was taken with $2s^2 2p^2$ (carbon) and $2s^2 2p^3$ (nitrogen) treated as valence electrons. The plane-wave kinetic-energy cutoff was set to be 600 eV and the Brillouin zone was sampled by Monkhorst-Pack meshed with the resolution $2π \times 0.03$ Å⁻¹ to ensure that the enthalpy calculations are converged to better than 1 meV/atom. Calculated total energies were corrected by considering van der Waals (vdW) interactions through the D2 method of Grimme [\[43\]](#page--1-0). Phonon calculations were carried out by using a finite displacement approach in the PHONOPY code [\[44\]](#page--1-0). Elastic constants were calculated by the strainstress method [\[45\]](#page--1-0), and then the polycrystalline bulk modulus, shear modulus, Young's modulus, and Poisson's ratio were estimated by using the Voigt-Reuss-Hill averaging scheme [\[46\].](#page--1-0)

3. Results and discussion

3.1. Stable structures under different pressures

The C_3N ground state at ambient pressure revealed by our structure searches is to be a layered phase. As shown in [Fig. 1](#page--1-0)a, the C_3N layered structure can be identified as N_2 molecules sandwiched between the graphite layers. This layered structure of C_3N is similar to the $P6/mmm$ structure predicted in Ref. [\[17\]](#page--1-0). For layered structure calculations, long-range vdW interactions should not be ignored. In this work, the vdW corrections were taken into account to acquire accurate lattice parameters of C_3N and exact orientations of N_2 , which were not considered in previous C_3N calculations [\[17,41\].](#page--1-0) The N_2 molecule was rotated in the two neighboring carbon layers to acquire the optimal orientation of $N₂$. Considering the graphite-like layered structure feature of C_3 N, N₂ rotation in the (001) plane was firstly taken. Then with the most stable orientation of N_2 in the (001) plane as the starting, the N_2 rotation out of the (001) plane was performed. This rotating plane is determined to be $(\overline{1}10)$ plane. During the N₂ rotating, the center of N₂ molecule was fixed. The calculated enthalpies as a function of $N₂$ rotation angles were plotted in [Fig. 1b](#page--1-0). For comparison, no-vdW correction results were also Download English Version:

<https://daneshyari.com/en/article/7217451>

Download Persian Version:

<https://daneshyari.com/article/7217451>

[Daneshyari.com](https://daneshyari.com)