Accepted Manuscript

Finite element simulation of scratch on polypropylene panels

W.M. Gao, L. Wang, J.K. Coffey, F. Daver

PII: S0264-1275(17)31123-1

DOI: doi:10.1016/j.matdes.2017.12.018

Reference: JMADE 3569

To appear in: *Materials & Design*

Received date: 2 October 2017
Revised date: 8 December 2017
Accepted date: 8 December 2017

Please cite this article as: W.M. Gao, L. Wang, J.K. Coffey, F. Daver, Finite element simulation of scratch on polypropylene panels. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Jmade(2017), doi:10.1016/j.matdes.2017.12.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Finite element simulation of scratch on polypropylene panels

W.M. Gao^{1,*}, L. Wang², J.K. Coffey³, F. Daver^{1,*}

- 1. School of Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia
- 2. School of Fashion and Textiles, RMIT University, 25 Dawson St, Brunswick, VIC 3056, Australia
- 3. Ford Motor Company, Research and Engineering Product Development Centre, 20901 Oakwood Blvd, Dearborn, MI 48124-4077, USA

Abstract:

Scratch simulation of polymeric materials has been a challenging task. It requires a material constitutive model that is capable of representing the complicated material response at large strains, and also a modelling method that can comprehensively resolve several physics, i.e., tribology, material deformation and damage, indenter statics and dynamics. This paper discussed the use of two finite element simulation approaches: (i) Abaqus/Explicit Arbitrary Lagrangian-Eulerian (ALE) adaptive meshing and (ii) the Coupled Eulerian-Lagrangian (CEL), in modelling scratches of talc-filled polypropylene using an elastic-plastic with isotropic hardening material model and a hyperelastic-viscoelastic model. The models were evaluated with scratch experiments and a very good agreement between the simulations and experiments was found. Various technical challenges in modeling scratch of polymeric materials were discussed and solved during the development of both successful methods and their merits and drawbacks were also discussed in detail.

Keywords: scratch, polypropylene, polymer, finite element, experimental verification

1. Introduction

Polypropylene (PP) and PP composites filled with various additives, such as talc, minerals and glasses, have been used as automotive interior components due to their resistance to corrosion, easy to form, light weight, low water absorption, good weatherability and low cost. However, the surface of PP compounds can be easily damaged by mechanical forces, causing scratch and mar during the manufacturing processes and consumer use, which limits their application in such field. It is essential to understand the scratch mechanism of PP compound panel surfaces for improving the material scratch/mar resistance [1].

The scratch/mar of thermoplastic materials is a complicated mechanical process, where surface interaction takes place between the object (indenter) and the materials [2]. Delving into the mechanism of the scratch/mar of the polymers requires a comprehensive treatment of

-

E-mail address: weimin.gao@rmit.edu.au (W.M. Gao); fugen.daver@rmit.edu.au (F. Daver)

^{*} Corresponding authors.

Download English Version:

https://daneshyari.com/en/article/7217504

Download Persian Version:

https://daneshyari.com/article/7217504

<u>Daneshyari.com</u>