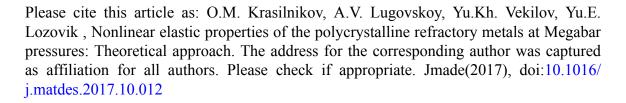
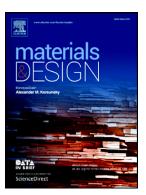
Accepted Manuscript

Nonlinear elastic properties of the polycrystalline refractory metals at Megabar pressures: Theoretical approach

O.M. Krasilnikov, A.V. Lugovskoy, Yu.Kh. Vekilov, Yu.E. Lozovik


PII: S0264-1275(17)30932-2

DOI: doi:10.1016/j.matdes.2017.10.012


Reference: JMADE 3410

To appear in: Materials & Design

Received date: 12 April 2017 Revised date: 4 October 2017 Accepted date: 6 October 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Nonlinear Elastic Properties of The Polycrystalline Refractory Metals at Megabar Pressures: Theoretical Approach

O. M. Krasilnikov, A. V. Lugovskoy, Yu. Kh. Vekilov, Yu. E. Lozovik, 4

¹Department of Theoretical Physics and Quantum Technology, National University of Science & Technology (MISIS), Moscow 119049, Russia

²Materials Modeling and Development Laboratory, National University of Science & Technology (MISIS), Moscow 119049, Russia

³Institute for Spectroscopy RAS, 142190 Troitsk, Moscow, Russian Federation

⁴ Moscow Institute of Physics and Technology (State University) 141700 Dolgoprudny, Moscow region, Russia

Abstract

We present the theoretical technique for the calculation of nonlinear elastic properties of polycrystals in the presence of hydrostatic pressure. For the isotropic aggregates of single-crystal grains with cubic or hexagonal structures at given pressure we define the Lamé constants and express them through the second and third order single-crystal elastic constants. We present the calculated third order Lamé elastic modules of polycrystalline W, Mo and Ru in the pressure range of 0-600~GPa. The results agree with available experimental data. The obtained values can be used for the prediction of properties for these materials at high pressures and finite deformations. We show, that the methodology can be effectively used with *ab initio* calculations techniques to obtain the data on elastic properties of practical importance.

Keywords: properties modeling; nonlinear elasticity; high pressure; metals; ab initio; Lamé constants

1. Introduction

The elastic constants characterize the mechanical response to external loading. The second order elastic constants (SOECs) define a linear response and the higher order elastic constants (third, fourth etc.) characterize the nonlinear response of materials to finite deformations [1]. The third order elastic constants (TOECs) which reflect the anharmonic

1

^a Electronic mail: andrey.lugovskoy@misis.ru

Download English Version:

https://daneshyari.com/en/article/7217526

Download Persian Version:

https://daneshyari.com/article/7217526

<u>Daneshyari.com</u>