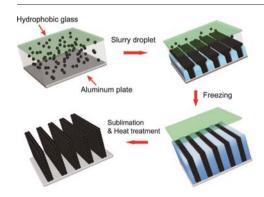
ELSEVIER

Contents lists available at ScienceDirect

Materials and Design

journal homepage: www.elsevier.com/locate/matdes

A highly-aligned lamellar structure of ice-templated LiFePO₄ cathode for enhanced rate capability


Wook Ki Jung ^a, Changyeon Baek ^a, Joo-Hyung Kim ^a, San Moon ^b, Dong Seok Kim ^c, Young Hwa Jung ^d, Do Kyung Kim ^{a,*}

- a Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- ^b Samsung Advanced Institute of Technology (SAIT), Suwon, Republic of Korea
- ^c Nuclear Fuel Safety Research Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero, Yuseong-gu, Daejeon, Republic of Korea
- ^d Pohang Accelerator Laboratory (PAL), Pohang, Gyeongbuk 37673, Republic of Korea

HIGHLIGHTS

- We introduce ice-templating method to fabricate lamellar structured LiFePO₄
- Lamellar structures offer larger areas for ionic conductivity and a short mean free path of electrons.
- A highly-aligned lamellar structure showed superior rate performance during the discharge.
- The lamellar structure addresses aforementioned issues and potentially applicable to the porous electrode design.

GRAPHICAL ABSTRACT

ARTICLE INFO

Article history: Received 25 July 2017 Received in revised form 1 November 2017 Accepted 2 November 2017 Available online xxxx

Keywords: Ice-templating LiFePO₄ Lithium-ion batteries Highly-aligned porous cathode

ABSTRACT

Ice-templating has been widely investigated in various energy-related fields owing to the simple and inexpensive process of this method which results highly-ordered lamellar structures. Lamellar structures offer larger active areas for ionic conductivity and a short mean free path of electrons. Here, an ice-templated LiFePO₄ cathode was introduced to achieve higher rate capability with a minimized carbon source. The fabricated highly-aligned porous structure demonstrates superior rate performance during the discharge process compared to electrodes which use conventional slurry casting. This enhanced performance is mainly attributed to the aligned porous structure, which facilitates the rapid transfer of electrons from the bulk to a current collector and also provides a good distribution of contact sites with Li ions in the electrolytes.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The demand for efficient energy storage systems has led the development of advanced batteries with higher energy density levels. Li-ion batteries, as one of the most common energy storage devices, have

* Corresponding author.

E-mail address: dkkim@kaist.ac.kr (D.K. Kim).

been extensively studied as part of the effort to explore novel materials for cathodes and anodes to realize enhanced operating voltages, capacities, power, and rate capabilities, and even acceptable safety levels [1–4]. Among the parameters which determine the performance of a battery system, the rate capability is considered as most crucial, especially when devices require high-speed charge performance, such as smart mobile devices and electric vehicles [5–12]. For enhanced rate capability, the design of the electrode is crucial, as it must offer a

Table 1Carbon content of LiFePO₄ raw powder and carbonized LFP/PAA composite.

Sample	Carbon content [wt%]
Raw powder (LFP-400) After carbonization (LFP-400/carbon)	2.1 4.4

Table 2 Specifications of the fabricated LiFePO₄ cathodes.

Sample name	Preparation method	LiFePO ₄ [wt%]	Carbon [wt%]		Loading [mg cm ⁻²]
CS_3	Conventional slurry-cast cathode	86.4	8.6	5.0	3
CS_5		86.4	8.6	5.0	5
FC_3	Ice-templated cathode	96	4.0	-	3
FC_5		96	4.0	-	5

short mean free path of electrons and a large contact area between the active materials and the electrolytes.

The active materials used in these systems are usually coated onto a metal foil (a typical current collector) in the form of a slurry which contains conducting agents and binders along with the active materials and volatile solvents via a conventional slurry casting method [13–15]. In terms of rate performance capabilities, this conventional preparation method of electrodes using a slurry is associated with several problems, including the agglomeration and separation of the active materials during the mixing process and increased electrical resistivity mainly induced by the insulating binders used. In order to address these issues, various designs for binder-free and porous electrodes have been widely investigated to obtain high rate performance and stable cycleability [16,17].

One promising approach is to prepare highly-aligned porous structures without the use of a binder. Such an aligned structure can expand the active reaction sites to facilitate the efficient transfer of electrons through every nanostructure in the array. The void volume between the neighboring materials can also allow for easy penetration of the electrolyte, resulting in high Li-ion flux. Several studies have concentrated on developing fabrication methods for these aligned porous

nanostructures [18–20]. Ice-templating, known to be an environmentally friendly and cost-effective method, is advantageous for producing aligned porous structures with various microstructural features. Morphology control of the porous structure also can be easily done by changing the solution properties and freezing conditions [21–23]. Many previous reports have shown improved performance when such devices are applied in energy devices [23–30]. Recently, the fabrication of cellular and lamellar LiFePO₄/C cathodes was reported [31]. However, the discussion of electrochemical properties of the lamellar structured LiFePO₄ is still insufficient.

Here, we suggest a well-aligned three-dimensional lamellarstructured LiFePO₄ electrode created via ice-templating and characterized the electrochemical performance by increasing active material loading. The ice-templated LiFePO₄ structure proposed here was composed of highly-aligned LiFePO₄ walls created by the packing of particles and macroscopic pore channels. The electrode design addresses the aforementioned issues and results in enhanced high rate capability than a conventional slurry-cast electrode. This new approach is potentially applicable to the development of porous electrode designs.

2. Experimental

Carbon-coated LiFePO₄ nanopowder (HED LFP-400, BASF) was used to create water-based slurry used here. The slurry was prepared with poly-acrylic acid (Partial sodium salt, 50 wt% solution in water, M_w = 5000, Sigma-Aldrich, USA) as a dispersant system (LFP-400: PAA = 9:1 (wt.)) [32,33]. The concentration of LiFePO₄ powder in the final slurry was 20, 15, 10 vol%. The as-prepared slurry was dropped onto aluminum (thickness 0.25 mm, 99.999% trace metal basis, Sigma-Aldrich, USA) which was pretreated in 0.1 M phosphoric acid for 10 min as a hydrophilic treatment. Several drops on the aluminum plate (~1 cm²) were covered by a hydrophobic-treated glass (Menzel-Glaser, 24 × 32 mm) and were frozen using liquid nitrogen. Subsequently, the glass was detached and the frozen sample was dried using a vacuum freeze dryer at -40 °C at 0.05 mbar for 0.5 h. When using the slurry with 15 and 20 vol% powders, the prepared slurry was stiff to fabricate the lamellar structure. For this reason, the slurry with 10 vol% powder was used to fabricate the ice-templated cathode. Finally, the freezedried sample was heated at a constant heating rate of 5 °C min⁻¹ to

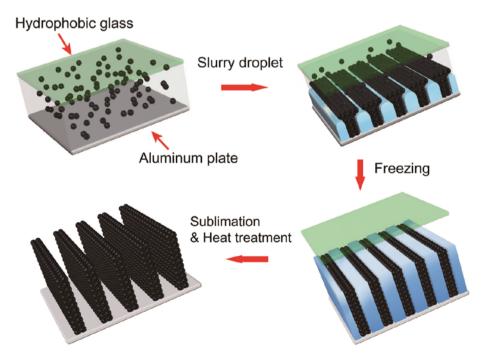


Fig. 1. Scheme of the fabrication process of ice-templated LiFePO₄ cathodes: Water-based slurry preparation, solidification, sublimation and heat treatment.

Download English Version:

https://daneshyari.com/en/article/7217543

Download Persian Version:

https://daneshyari.com/article/7217543

Daneshyari.com