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Abstract: This paper presents a compression method for inertial and magnetic sensor data,
where compressed data are used to estimate some states. When sensor data are bounded,
the proposed compression method guarantees that the compression error is smaller than a
prespecified bound. How this error bound affects the compression ratio and the estimation
performance is investigated. Using the compression error bound information in the filter
algorithm, the estimation performance is improved.

Keywords: compression, estimation, inertial sensor, magnetic sensor

1. INTRODUCTION

Due to mainly MEMS technology, inertial sensors (ac-
celerometers and gyroscopes) are becoming smaller and
cheaper, which made it possible that inertial sensors are
used in many applications (see Barbour and Schmidt
(2001)). Inertial sensors are used for motion trackers in
Welch and Foxlin (2002), personal navigation systems in
Foxlin (2005), and remote control systems in Suh et al.
(2007a).

In some applications such as body motion trackers (for
example, Moven by a company XSENS), many inertial
sensors are used to track body movement. As the num-
ber of inertial sensors increases, the size of sensor data
increases accordingly. The sensor data are transmitted
to the microprocessor board through wired or wireless
communication channels. If the size of sensor data exceeds
capacity of the communication channel, the size of sensor
data needs to be reduced.

One way to reduce the size of sensor data is compressing
the sensor data before transmission and decompressing
the received data in the microprocessor board. In appli-
cations such as body motion trackers, real-time compres-
sion method is preferable; otherwise sensor data transmis-
sion is delayed and motion estimation is delayed. One of
most popular real-time compression method is ADPCM
(Adaptive Differential Predictive Control Method), which
is optimized for voice data (see Jayant and Noll (1984)).
In Cheng et al. (2008), a simplified ADPCM method
is used for inertial sensor data compression, where the
maximum error (the difference between the original data
and the compressed-and-then-decompressed data) is only
relatively bounded (e.g., 1% of the sensor data).

When we compare data compression methods, perfor-
mance indices are a compression rate and a quality of
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compressed data. In voice data compression, the qual-
ity of compressed data is evaluated by listening to
the compressed-and-then-decompressed voice data. This
rather subjective evaluation makes sense since the final
destination of compressed data is human ears. On the
other hand, the final destination of compressed inertial
sensor data is usually a filter (such as Kalman filter), where
orientation is estimated. Thus the quality of compression
should be judged by how the compression affects the esti-
mation performance.

In this paper, a modified ADPCM method is proposed,
where the absolute maximum error bound is explicitly
given. Also, we investigate how this error affects the
estimation performance.

2. INERTIAL AND MAGNETIC SENSOR DATA
COMPRESSION AND ESTIMATION

The overall process of compression and estimation is given
in Fig. 1, where k is a discrete time index. The objective is
to estimate some states x(k) (attitude, heading, position,
and etc) using inertial sensor data y(k) while a data
transmission rate is limited. The inertial sensor data y(k)

is compressed into d̃(k) and transmitted to the micropro-
cessor board. The compressed data is decompressed into
ŷ(k) and the state x(k) is estimated using a filter.
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Fig. 1. Overview of inertial and magnetic sensor data
compression and estimation

Since the objective is to find a good estimator of x(k),
quality of compression is evaluated to be good if the
estimation error x(k) − x̂(k) is small. Quality of the
compression algorithm is evaluated using the following
estimation performance:

Pestimation = E{(x − x̂(ŷ))′(x − x̂(ŷ))} (1)



where x̂(ŷ) is an estimator when ŷ is used as an output.

Note that Pestimation depends on a filter algorithm used to
compute x̂(ŷ) in addition to the compression algorithm.

The compression ratio is defined as follows:

Pcompression =

∑N

k=1
number of bits expressing d̃(k)

∑N

k=1
number of bits expressing y(k)

(2)

where N is the number of total data. Note that small
Pcompression means that compression efficiency is good.

3. MODIFIED ADPCM ALGORITHM

The ADPCM block schematic is given in Fig. 2. We assume
that y(k) is an output of ny bit uniform quantizer, where
y(k) satisfies

|y(k)| ≤ ymax. (3)
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Fig. 2. Encoder and decoder block schematic

Let the quantization size δ of y(k) be defined by

δ =
ymax

2ny−1
. (4)

If there are more than one sensor, we need an encoder for
each sensor.

The sensor data y(k) is compared with the predictor

output ỹ(k). The difference d(k) is coded into d̃(k) and

this d̃(k) is transmitted to the estimator board. In the

standard ADPCM, d̃(k) is a quantization index i(k); in

this paper, d̃(k) consists of one bit mode information m(k)
and a quantization index i(k):

d̃(k) =

[

m(k)
i(k)

]

. (5)

In the decoder, the decompressed data is ŷ(k) = ỹ(k) +

d̂(k). The predictor output ỹ(k) can be computed from

d̂(k) and thus need not be transmitted.

The adaptive predictor uses the same pole-zero configura-
tion as that in CCITT G.726 ADPCM.

The adaptive algorithm in G.726 is used to adjust ai and
bi and the detail is given in ITU (1990); the tone and
transition detector part was omitted since the part is only
for voice data.

The compression error ec(k) is a difference between an
original signal y(k) and the decompressed signal ŷ(k):

ec(k) = y(k) − ŷ(k) (6)

Standard ADPCM algorithms will be modified so that the
maximum error is bounded as follows:

|ec(k)| ≤ emax. (7)

Now d̃(k) coding is explained. The mode bit m(k) in d̃(k)
is used to ensure (7) and m(k) = 0 if d(k) is not large.
More specifically, m(k) is determined as follows:

m(k) =

{

0, if
|d(k)|

2ys(k)δ
≤ 1

1, otherwise.
(8)

where ys(k) is an adaptive scaling factor.

The quantization index i(k) is defined differently when
m(k) = 0 and when m(k) = 1.

3.1 Quantization index when m(k) = 0

If m(k) = 0, a signal d(k) is quantized with nd bits with a
logarithm quantizer with an adaptive scaling factor ys(k),
where the quantized index i(k) (1 ≤ |i| ≤ 2nd−1) satisfies

fi−1 <
|d(k)|

2ys(k)δ
≤ fi. (9)

The sign of index i(k) is the same as that of d(k). If
d(k) = 0, then i = 1. Coefficients fi in (9) is computed
from µ law (see Jayant and Noll (1984)).

The scaling adaptation factor ys(k) is computed similarly
with the standard ADPCM algorithm except that ys(k) is
bounded as follows:

3 ≤ ys(k) ≤ ȳs. (10)

We note that ȳs is chosen so that (7) is satisfied. To do
that, the upper bound of ec(k) is computed when ȳs is
given.

The error ec(k) is then

|ec(k)| = |d(k) − d̂(k)|

≤ 2ys(k)δ
fi − fi−1

2
.

(11)

From the fact that fi is monotonically increasing and (10),
we have

|ec(k)| ≤ 2ys(k)δ
f
2

nd−1 − f
2

nd−1
−1

2

≤ 2ȳsδ
f
2

nd−1 − f
2

nd−1
−1

2
.

Given emax, to satisfy (7), ȳs should satisfy the following

2ȳsδ
f
2

nd−1 − f
2

nd−1
−1

2
≤ emax. (12)

Thus if ȳs is chosen to satisfy (12), the quantization error
is always smaller than emax when m(k) = 0. We also note
that in addition to the global bound emax, if index i(k) is
known, we have a less conservative bound given in (11):

ēc(k) = 2ys(k)δ
fi − fi−1

2
. (13)

This bound will be used later in the estimation problem.

3.2 Quantization index when m(k) = 1

From (8), m(k) = 1 if |d(k)| > 2ys(k)δ. If m(k) = 1,
then the logarithm quantizer used in the mode 1 cannot
guarantee the maximum error (7). Noting that d(k) =
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