Accepted Manuscript

Microstructure and mechanical properties of laser welded-brazed Mg/Ti joints with AZ91 Mg based filler

Caiwang Tan, Bo Chen, Shenghao Meng, Kaiping Zhang, Xiaoguo Song, Li Zhou, Jicai Feng

PII: S0264-1275(16)30355-0

DOI: doi: 10.1016/j.matdes.2016.03.073

Reference: JMADE 1551

To appear in:

Received date: 29 January 2016 Revised date: 13 March 2016 Accepted date: 14 March 2016

Please cite this article as: Caiwang Tan, Bo Chen, Shenghao Meng, Kaiping Zhang, Xiaoguo Song, Li Zhou, Jicai Feng, Microstructure and mechanical properties of laser welded-brazed Mg/Ti joints with AZ91 Mg based filler, (2016), doi: 10.1016/j.matdes.2016.03.073

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Microstructure and mechanical properties of laser welded-brazed Mg/Ti joints

with AZ91 Mg based filler

Caiwang Tan^{a,b}*, Bo Chen^a, Shenghao Meng^a, Kaiping Zhang^a,

Xiaoguo Song^a, Li Zhou^a, Jicai Feng^{a,b}

a. Shandong Provincial Key Laboratory of Special Welding Technology, Harbin

Institute of Technology at Weihai, Weihai 264209, China

b. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of

Technology, Harbin 150001, China

* Corresponding author: Caiwang Tan. Tel./Fax: +86 631 5678211

E-mail address: (tancaiwang@163.com)

Abstract

AZ31B Magnesium (Mg) alloys and Ti-6Al-4V titanium (Ti) alloys were joined

by laser welding-brazing process with AZ91Mg based filler. Uniform and continuous

weld surfaces without obvious defects were produced in a relatively large processing

window. In the process Al element diffused from the filler and reacted with Ti

resulting in metallurgical bonding of Mg/Ti joint. An ultra-thin reaction layer with

serrate-shaped morphology was evidently observed at the interface of AZ91 fusion

zone/Ti. The thickness was varied slowly with the change of the heat input. Newly

formed interfacial compound was then identified as Ti₃Al phase by transmission

electron microscopy (TEM) analysis. The maximum tensile-shear strength reached

2057 N, representing 50% joint efficiency relative to Mg base metal. Two kinds of

fracture modes were noticed during the tensile-shear test. Observation of fracture

surfaces suggested some reaction products were attached to Ti substrate in both cases,

which was found to prevent crack propagation effectively and thus improved the joint

strength.

1

Download English Version:

https://daneshyari.com/en/article/7218339

Download Persian Version:

https://daneshyari.com/article/7218339

Daneshyari.com