Accepted Manuscript

Correlating the elastic properties of metakaolin-based geopolymer with its composition

Dongming Yan, Shikun Chen, Qiang Zeng, Shilang Xu, Hedong Li

PII: S0264-1275(16)30107-1

DOI: doi: 10.1016/j.matdes.2016.01.107

Reference: JMADE 1308

To appear in:

Received date: 1 November 2015 Revised date: 20 January 2016 Accepted date: 21 January 2016

Please cite this article as: Dongming Yan, Shikun Chen, Qiang Zeng, Shilang Xu, Hedong Li, Correlating the elastic properties of metakaolin-based geopolymer with its composition, (2016), doi: 10.1016/j.matdes.2016.01.107

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Correlating the elastic properties of metakaolin-based geopolymer with its composition

Composition

Dongming Yan^a, Shikun Chen^a, Qiang Zeng^{a,*}, Shilang Xu^a, Hedong Li^a

anstitute of Advanced Structures and Materials, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, P.R.China

Abstract

6 Geopolymer shows great potential as a construction material with low energy consumption and carbon oxide emission.

7 Quantitatively assessment of elastic properties of a geopolymer and understanding the correlations with its composition

and microstructure are therefore very important for its rational utilization. In the present investigation, two series of

metakaolin-based geopolymer (MKG) were synthesized by controlling, respectively, mass ratio of alkali in activator

to powders, namely the alkali equivalent (AE) to the aluminosilicate materials, within a range of 10%-50% and

molar ratio of SiO_2 to Na_2O in activator, namely modulus of silicate (Ms), within a range of 1.25–2.25. General

12 elastic mechanical properties (i.e., the Young's, bulk and shear moduli and the Poisson's ratio) of the MKG specimens

were evaluated from load-strain curves measured by an integrated measurement and control system and the microstruc-

tures were determined by an ESEM-EDS analysis. The experimental results, combined with the analysis of variance

method, indicate that, within the test ranges, the AE dosage influences all the characteristic elastic properties of the

6 MKG specimens, whereas the effect of Ms level is insignificant. The morphology observations of the microstructures

of the MKG specimens support the mechanical results, although both the AE dosage and Ms level change the chemical

8 composition obviously. The results in the present study may help to tailor MKG material with its composition for

further engineering applications.

20 Keywords: Geopolymer, Metakaolin, Microstructure, Elastic property.

*Corresponding author

Email address: cengq14@zju.edu.cn (Qiang Zeng)

Preprint submitted to Elsevier January 22, 2016

Download English Version:

https://daneshyari.com/en/article/7218638

Download Persian Version:

https://daneshyari.com/article/7218638

<u>Daneshyari.com</u>