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Abstract: Integrated navigation systems based on inertial sensors and GPS are well-

established devices for vehicle guidance. The system design is traditionally based on the 

assumption that the vehicle is a rigid body. However, generalizing such integrated sys-

tems to rigid multibody or even more to flexible structures is possible. It is based on dis-

tributed sensors and provides an interesting basis for motion control and system identifi-

cation. The kernel of the integrated system consists of an observer that estimates the mo-

tion state of the mechanical structure. The paper presents the multibody and the flexible 

structure approach as well as first motion estimation results. Copyright © 2006 IFAC 
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1. INTRODUCTION 

 

Integrated navigation systems based on gyros, accel-

erometers, and satellite navigation receivers are well-

established devices for vehicle guidance. The central 

system design requires modelling the kinematics of 

the vehicle, which is traditionally assumed to be sim-

ply a single rigid body (Farrell and Barth, 1999). 

However, this premise is no longer reasonable if the 

system layout includes sensors being distributed spa-

ciously over the vehicle and if in parallel the vehicle 

changes its shape due to structural flexibilities (e.g. 

large aircraft) or due to a multibody structure (e.g. 

mobile robots). In this case, generalizing the theory 

of integrated navigation systems becomes necessary. 

This approach is outlined in the following and pro-

vides not only an interesting basis for an extensive 

motion control but also for system identification. 

 

Firstly, Section 2 presents the principle of integrated 

navigation systems and illustrates that this is more 

precisely a matter of integrated motion measurement 

of a given mechanical structure. Including simulation 

and experimental results, Section 3 contains a synop-

sis of the extended system theory for multibody struc-

tures, and Section 4 for flexible vehicles. Section 5 

summarises the outcome and specifies future work. 

 

 

2. INTEGRATED MOTION MEASUREMENT 

 

The idea of integrated navigation systems consists of 

combining complementary motion measuring princi-

ples and of utilising their specific advantages: Inertial 

sensors like classical or like modern micro-electro-

mechanical gyros and accelerometers are used to ob-

tain reliable signals being usable for a short period of 

time and allowing a high resolution with time. On the 

other hand, less dependable sensors (often with rele-

vant signal delays) like GPS receivers and radar units 

are used due to their good long-term accuracy. The 

kernel of integrated navigation systems is an observer 

(typically realised by an extended Kalman filter (Gelb, 

1989)) blending the sensor signals and estimating the 
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relevant vehicle motion (Farrell and Barth, 1999). 

Besides the sensor combination employed, the theo-

retical basis for the filter requires a kinematical 

model of the vehicle motion considered, which has to 

be set up individually (nevertheless, established mod-

els exist (Wagner and Wieneke, 2003)). This model 

describes the standardised dynamics of the vehicle, 

mostly by means of specific forces, i.e. accelerations, 

and of angular rates. Hence, there are no dynamome-

ters or mass properties needed in this approach. 

 

There are different system integration variants of such 

navigation systems (Wagner and Wieneke, 2003). 

However as mentioned, they all have the observer 

principle in common with the signal flow depicted in 

Figure 1: Reliable sensors of high availability permit 

a good resolution with time (like accelerometers and 

gyros) and provide the input signal vector u generat-
ing the vehicle motion considered (state vector x). 
Based on x and u, so-called aiding sensors (being 
mostly attached to the vehicle) like a GPS receiver or 

a laser altimeter provide measurement signals (vector 

y) with good long-term accuracy. Furthermore, there 
is a parallelism between the performance of the real 

moving structure and its aiding equipment on one 

side and a motion and aiding simulation on the other 

side. The simulation takes place within the actual ob-

server, it is based on two kinematical models, and it 

leads to estimates x̂  and ŷ  of x and y. The first model 
describes the motion considered and is a set of ordi-

nary nonlinear differential equation (being solved 

numerically); the second one emulates the aiding: 

 ( )ˆ ˆ( ) ( ), ( )t t t=x f x uɺ , (1) 

 ( )ˆ ˆ( ) ( ), ( )t t t=y h x u . (2) 

Due to sensor, modelling and initialisation errors, the 

estimates show inaccuracies, which increase usually 

with time t and which require therefore a correction: 

The feedback of the difference between y and ŷ  
serves as input of a compensation device adjusting x̂  
by ˆ( )K y y− . The correction matrix K(t) is typically 
part of the algorithm of an extended Kalman filter, 

however sometimes alternatives like particle filters 

are used as well (Yi and Grejner-Brzezinska, 2006). 

 

Independently from the observer type, the system sta-

bility requires that x is completely observable. Reflect-
ing the type and geometrical array of the sensors used 

(see below), the content of f and h determines this 
property. The observability is ensured if the matrix 

 ( )
1n

T T T T T
− = ⋅ ⋅ 

 
Ξ H F H F H…  (3) 

employing the Jacobians F(x(t),u(t)) and H(x(t),u(t)) 
of f and h has full rank n (Gelb, 1989) with n being 
the number of state variables in x. As F and H vary 
with time, it is possible that phases of complete ob-

servability alternate with phases of reduced observabil-

ity. This applies especially for the classical combina-

tion of inertial sensors with a single antenna GPS re-

ceiver during periods of steady vehicle motion (Hong 

et al., 2000). To solve this problem effectively, sev-

eral aiding antennas are required that have to be dis-

tributed spaciously over the vehicle (Wagner, 2003). 

 

Assuming consequently distributed sensors, the idea 

of a single rigid body being the moving structure be-

comes doubtful. On the other hand, the theory of mo-

tion modelling for integrated navigation can be ex-

tended to rigid multibody systems and also to flexible 

structures. This is outlined in the next two sections. 

 

 

3. RIGID MULTIBODY SYSTEMS 

 

The kinematics (i.e. time variable geometry) of rigid 

multibody systems can be conveniently and com-

pletely described with a minimal set of generalised 

coordinates q(t) and minimal set of (pseudo) veloci-
ties ( )tπɺ  (Bremer and Pfeifer, 1992). In case, the sys-

tem is holonomic, qɺ  and πɺ  are identical. Otherwise, 
usual mechanical structures show a linear relation be-

tween qɺ  and πɺ , which reduces the number of de-
grees of freedom from the level of position/attitude to 

the level of velocities. Employing the Jacobian Jq and 
the term q′, this equation reads in general: 

 ( ) ( ), ,q t tq J q π q q′= +ɺ ɺ . (4) 

Assuming a rigid multibody system equipped with µ 

accelerometers j (i.e. j = 1, …, µ) and ν gyros k (i.e. 

k = µ+1, …, µ+ν), each being strapped down to one of 

the rigid components, the following general relations 

describe firstly the position irj , the velocity 
i

i j
rɺ , and 

the acceleration 
i

i jrɺɺ  of an accelerometer attachment 
point. In these relations, the subscript on the lower 

left side indicates the coordinate system for repre-

senting the respective vector, whereas the upper left 

subscript describes that the vector has been differen-

tiated with respect to the indicated coordinate system. 

In both cases, an inertial frame i is employed here: 

 ( ), ,i j i j t=r r q  (5a) 

 ( ), with ,
i j i ji

i j r r
j j
t

t

∂ ∂
= + =

∂ ∂

r r
r J q q J

q
ɺ ɺ  (5b) 

 ( )
d d

, .
d d

r
j i ji

i j r
j
t

t t t

 ∂  = + +    ∂ 

J r
r J q q qɺɺ ɺɺ ɺ  (5c) 

The next equations describe the attitude iγk (e.g. three 
Euler angles), the angular rate iωk , and the angular ac-
celeration ii kωɺ  at a gyro attachment point. As large ro-
tations iγk have not the character of a Cartesian vector 
like irj or iωk , only similar relations between the atti-
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Fig. 1. Observer principle used for signal fusion. 
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