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Previous researches show that the superconducting transition temperature TC0 of high temperature supercon-
ductors can be calculated approximately by the algebraic relation TC0=KB

−1β/(‘ζ). To predict TC0more accurately,
we propose a data mining approach called RS-PSO-SVR combining Rough Set theory, Particle Swarm Optimiza-
tion with Support Vector Regression method. Based on the prior experimental data,the optimized model was
established for predicting the TC0. The analyses show that the interlayer Coulomb interaction is an effective de-
scriptor for predicting TC0. By our experiment, the proposed algorithm successfully predicted the TC0 of high tem-
perature superconductors. These results show that our model provide theoretical guidance for physical
experiments by reducing arbitrary experiments.
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1. Introduction

The high temperature superconductors [1] are characterized by
a two-dimensional (2D) layered superconducting condensate with
unique features [2]. Superconducting properties can be optimized by
element doping or applied pressure to yield higher transition tempera-
ture and bulkMeissner effect [3]. Thus, various high temperature super-
conductors have been the interests of extensive research [4–7]. Many
investigations show that the superconducting transition temperature
(TC0) of high temperature superconductors depends on its crystal struc-
ture, cell parameters, ionic valences, and Coulomb coupling between
electronic bands in adjacent, spatially separated layers [5]. Some re-
searchers analyzed more than thirty high temperature materials with
five structural and chemical family types, such as cuprate, ruthenate,
rutheno-cuprate, iron-pnictide, iron-chalcogenide, and organic. It is
shown that TC0 can be given by the following algebraic expression [6,7].

TC0 ¼ K−1
B β= ‘ζð Þ ð1Þ

Here, ‘ is related to themean spacing between interacting charges in
the layers, ζ is the distance between interacting electronic layers, β is a
universal constant, and kB is Boltzmann's constant.

It is critical to predict TC0 of various superconductors. As one of the
data analysis methods, Rough Set (RS) theory was firstly proposed by
Pawlak et al. [8]. Drawing lessons from various definitions of uncertainty
and ambiguity in logic and philosophy, Pawlak proposed a concept of

imprecise category for knowledge base. Then it developed into a com-
plete RS theory. As an effective mathematical tool for manipulating im-
precise, incomplete, and incompatible data, it has been widely applied
in thefields of intelligent information systems and achieves great success.

Recently, in order to accelerate the process of discovery and deploy-
ment of new materials at a fraction of cost, Materials Genome Initiative
(MGI) was proposed in the United States in 2011 [9]. Under the frame-
work of MGI, the concept of materials design is emphasized by utilizing
the database with big data characteristics, computational simulation,
optimization, and prediction methods. In this paper, based on experi-
mental data in literatures, we established an optimized model using
Support Vector Regression (SVR) [10] and RS theory [8,11,12] to predict
TC0 of high temperature superconductors more accurately than the
methods studied in this work. Data mining technology is also used to
extract effective information from the available experimental results.
Here, we use the predicted TC0 by equationmethod and the experimen-
tal value (target value) as prior experimental data, and RS is adopted as
a data preprocessingmethod to get a normalized dataset suitable for the
machine learning algorithm [12]. Our method is applied to predict the
TC0 through the interlayer Coulomb interaction, leading to more accu-
rate results than the TC0 estimated by the Eq. (1). Our model provides
a theoretical tool guiding further experiments by reducing the uncer-
tainty of prediction.

2. Theory and methods

2.1. Theory of PSO-SVR

Support Vector Machine (SVM) used in the present work is a ma-
chine learning algorithm based on statistical learning theory and firstly
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proposed by Vapnik et al. [13]. Comparingwith traditional learningma-
chines such as genetic algorithm and artificial neural network, SVM has
a better generalization precision and nonlinear processing ability. SVM
has been successfully applied to solve classification and regression
problems in many computing researches [14–18]. SVR is an extension
of SVM [13,19–22]. It is suitable for handling nonlinear problems with
the aid of nonlinear mapping function generally known as kernel func-
tion that helps in mapping descriptors to high-dimensional feature
space Fwhere the linear regression is conducted [12]. The complete rep-
resentation of regression function for a training dataset is presented as
below:

f xð Þ ¼
Xl

i¼1

αi−α�
i

� �
k x; xið Þ þ bi ð2Þ

where l is the number of support vectors, αi and αi⁎ are Lagrange multi-
pliers, k(x,xi )=Φ(x) •Φ(xi) is a kernel function, and b is a bias. In this
study, radial basis kernel is adopted as the kernel function. The detailed
principle of SVR can be found in Ref. [13].

As an optimization technique, the Particle Swarm Optimization
(PSO) method was proposed by Kennedy and Eberhart [23,24]. It was
motivated by social behavior of organisms such as bird flocking and
fish schooling. In the SVR method, it is important to determine the key
parameters including regularized constant C, and the kernel function
parameter γ. The Grid algorithm can be used to find the optimal C and
γ, but it is time consuming and cannot converge at the global optimum.
Therefore, in order to improve the efficiency of prediction, PSO is

utilized to search the optimal parameters (C, γ) of SVR in this work
[9]. Root mean square error (RMSE) serves as the fitness function:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
i¼1

ybi−yiÞ2
�vuut ð3Þ

wherem denotes the number of training samples, yi andybi represent the
measured and estimated values for the ith training sample, respectively.

2.2. The algorithm of rough set preprocessing

RS theory is oneof thedata analysismethods based on the concept of
imprecise category. In this research, it is adopted as a data preprocessing
method to deal with the literature data. TC0 can be estimated by the
Eq. (1) within an accuracy of ±1.31 K. Comparing the TC0 estimated
by Eq. (1) and the target value measured experimentally, the dataset
can be classified as two categories: overestimated and underestimated
values, respectively. Applying the RS preprocessing algorithm, the
weight of each feature can be calculated. The weights are associated
with the balance of the equation and the target values, affecting the pre-
dicted values. In the processing of training and testing, the weights are
adjusted to achieve the optimal predicted values.

Meantime, the application of RS theory for a given set of sample data
preprocessing makes the characteristic values of all data more general
and the weight more remarkable [12]. It means that all the dimensions
of the data set are scaled to [0, 1] and the specific characteristics
attributes of each dimension are kept. The normalization makes the
data processing easy. Moreover, the normalized data can improve the
prediction abilities of the model.

Base on the discussions above, the proposed algorithm are briefly
described below.

2.2.1. RS preprocessing algorithm
Input: training set and test set.
Output: weight of each feature.
Step 1: Scale all the dimensions in both training set and test set to

[0, 1].
Step 2: Make a copy of training set. Each data in the copied training

set, round to two decimal places. Then magnify them 100 times so
that all the data are integer and range in [0, 100].

Step 3: For each dimension in the copied training set, count the times
of each integer i range in [0, 100] in the copied training set and belong to
the j class, denoted by Tji.

Step 4: Calculate the percentage classification P by the following
formula.

Pi ¼ max Tji
� �

=
Xm
j¼1

Tji ð4Þ

Table 1
The main parameters, including measured TC0, the distance between interacting layers ζ,
the calculated spacing between interacting charges within layers ‘, and the theoretical
TC0 [6–7].

No. Superconducting
compounds

ζ(Å) l (Å) Equation.val
(K)

Meas.val
(K)

1 YBa2Cu3O6.92 2.2677 5.7085 96.36 93.7
2 YBa2Cu3O6.60 2.2324 8.6271 64.77 63
3 LaBa2Cu3O7–δ 2.1952 5.7983 98 97
4 YBa2Cu4O8(12GPa) 2.1658 5.5815 103.19 104
5 Tl2Ba2CuO6 1.9291 8.0965 79.86 80
6 Tl2Ba2CaCu2O8 2.0139 5.7088 108.5 110
7 Tl2Ba2Ca2Cu3O10 2.0559 4.6555 130.33 130
8 TlBa2CaCu2O7–δ 2.0815 5.7111 104.93 103
9 TlBa2Ca2Cu3O9+δ 2.0315 4.6467 132.14 133.5
10 HgBa2Ca2Cu3O8+δ 1.9959 4.6525 134.33 135
11 HgBa2Ca2Cu3O8+δ(25GPa) 1.9326 4.4664 144.51 145
12 HgBa2CuO4.15 1.9214 7.0445 92.16 95
13 HgBa2CaCu2O6.22 2.039 4.8616 125.84 127
14 La1.837Sr0.163CuO4–δ 1.7828 18.6734 37.47 38
15 La1.8Sr0.2CaCu2O6±δ 1.7829 11.99 58.35 58
16 (Sr0.9La0.1)CuO2 1.7051 17.6668 41.41 43
17 Ba2YRu0.9Cu0.1O6 2.0809 18.6123 32.21 35
18 (Pb0.5Cu0.5)Sr2(Y,Ca)Cu2O7–δ 1.9967 9.2329 67.66 67
19 Bi2Sr2CaCu2O8+δ 1.795 8.0204 89.32 89
20 (Bi,Pb)2Sr2Ca2Cu3O10+δ 1.6872 6.5414 113.02 112
21 Pb2Sr2(Y,Ca)Cu3O8 2.028 8.0147 76.74 75
22 Bi2(Sr1.6La0.4)CuO6+δ 1.488 24.0797 34.81 34
23 RuSr2GdCu2O8 2.182 11.3699 50.28 50
24 La(O0.92–yF0.08)FeAs 1.7677 28.4271 24.82 26
25 Ce(O0.84–yF0.16)FeAs 1.6819 19.9235 37.23 35
26 Tb(O0.80–yF0.20)FeAs 1.5822 17.2624 45.67 45
27 Sm(O0.65–yF0.35)FeAs 1.667 13.2895 56.31 55
28 (Sm0.7Th0.3)OFeAs 1.671 14.3711 51.94 51.5
29 (Ba0.6K0.4)Fe2As2 1.932 17.4816 36.93 37
30 Ba(Fe1.84Co0.16)As2 1.892 28.0043 23.54 22
31 FeSe0.977(7.5GPa) 1.424 23.8828 36.68 36.5
32 Fe1.03Se0.57Te0.43(2.3GPa) 1.597 30.4467 25.65 23.3
33 K0.83Fe1.66Se2 2.0241 20.4923 30.07 29.5
34 Rb0.83Fe1.70Se2 2.1463 18.2889 31.78 31.5
35 Cs0.83Fe1.71Se2 2.3298 18.1873 29.44 28.5
36 κ–[BEDT-TTF]2Cu[N(CN)2]Br 2.4579 43.7194 11.61 10.5

Table 2
Statistics of variables for the prediction model.

Variables Min Max Mean Standard deviation

ζ(Å) 1.424 2.4579 1.9323 0.24
l (Å) 4.4664 43.7194 13.9872 9.26
Equation.val (K) 11.61 144.51 68.2739 38.58
Meas.val (K) 10.5 145 68.0139 38.88

Table 3
The calculated feature weights.

Feature ξ L Equation.val

Weight 0.53 0.44 0.50
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