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Active materials for either anode or cathode have a stoichiometric upper limit of lithium intercalation. To inves-
tigate the effects of stoichiometricmaximum concentration (SMC) on the lithiumdiffusion and diffusion induced
stress, we establish an analyticalmodel and comparewith existing results.We show that SMC not only facilitates
lithiumdiffusion, but also significantly relieves themaximum stress and its corresponding peak value during lith-
ium insertion, and therefore, declines the probability of fracture in the electrode particle. Moreover, the effect of
SMC is found to bemore obvious for higher surface current density or lower stress coupling due to the significant
concentration gradient of lithium. Finally, by investigating the combined effect of current density and stress, this
work provides insights on the presence of SMC, as well as suggestions for the relevant modeling works on
whether the SMC should be taken into account for material selection and designing.
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1. Introduction

Today, lithium-ion battery serves as a very important member of re-
chargeable batteries and has received tremendous popularity in our
daily life [1]. Among the intensive studies in the past few years, increas-
ing the battery charge and energy capacity receives a great deal of atten-
tion. It has been shown that mechanical stress induced by lithium
diffusion is one of the most key factors that obstruct the durability and
performance of batteries since it may lead to electrode fracture or frag-
mentation [2–4], and loss of electric contact with the current collector
[5]. It is, therefore, important to describe properly the lithium diffusion
and the corresponding diffusion induced stress (DIS) in the electrodes.

Active particles are the crucial components of the active layer in the
electrode. DIS in particles may result in fragments inside the particle
and thus is essential for material selection and designing [6]. In the
literature, many theoretical works have been devoted to determine
the particle stress. Some considered the diffusion is driven only by the
lithium concentration gradient and described it using Fick's law of
diffusion, e.g. the calculations of DIS in cathode particles [7–8] and
anode particles like graphite [9]. Some others adopted a stress coupling
diffusion model in which diffusion and stress were mutually affected.
For example, Christensen and John Newman [10] developed a strongly
coupled diffusion model and evaluated the DIS of carbonaceous

particles. Zhang et al. [6] simulated DIS in ellipsoidal LiMn2O4 particles
with results suggesting that particles with smaller size and larger aspect
ratios are desirable to reduce DIS. Chakraborty et al. [11] investigated
DIS and deduced the axial growth of a cylindrical silicon particle.

It is well known that active materials for either anode or cathode
have an upper limit of lithium intercalation. Although the above results
were insightful, neglecting the effect of stoichiometric maximum con-
centration (SMC) would limit these conclusions only strictly applicable
for dilute concentrations andmake themdisabled in predicting the con-
centration profiles and DIS within the battery electrode with the higher
state of charge or larger influx. Recently, there have been several works
addressing SMC effects. Haftbaradaran et al. [12] studied the impacts of
SMC on the hydrogen diffusion in nickel in a freestanding plate. Bower
et al. [4] proposed a finite strain model with the influence of SMC and
compared with the experimental measurements of a silicon thin film
deposited on a rigid substrate. Veruska et al. [13] discussed the impacts
of concentration-dependent chemical expansion on the diffusion and
DIS in a LixCoO2 particle. Purkayastha and McMeeking [14] considered
the SMCeffect both in lithiumchemical potential andflux and identified
the impacts of non-dimensional parameters on the maximum DIS.
However, it is still not clear that the mechanism how the SMC impacts
lithium diffusion and DIS within the active particles. Especially, the ef-
fects of material properties and charging operations on the presence
of SMC are still unknown. In addition, none of the published reports
have distinguished the applicable conditions of the classical diffusion
models with/without SMC, and consequently resulting in inappropriate
electrode designing for the battery system.
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In thismanuscript,wewill investigate systematically the role of SMC
on lithiumdiffusion, and the correspondingDIS aiming to provide a sim-
ple and accurate basis for theoretical modeling and applications of
lithium-ion secondary batteries. An analytical model of mechanochem-
ical diffusion considering SMC in the spherical active material will be
established. Evolutions of the lithium concentration, the radial and
hoop stresses as well as themaximum stresses will be simulated. Final-
ly, a serviceability map of the current used models will be provided
based on the discussions for engineering usage.

2. Methodology

2.1. Continuum modeling of mechanochemical diffusion

In order to consider the SMC effect, we assume that lithium interca-
lation consumes vacancy sites of the host material. Since vacancies in a
material are finite, lithium concentration reaches its maximum when
that material is fully intercalated. Considering an element of a host
material which subjects to hydrostatic stress σh, the mechanochemical
potential of lithium per mole is [12]

μ ¼ μs−μv−Ωσh: ð1Þ

Here, μs=μs0+RgT lnas and μ v=μv0+RgT lnav are the chemical po-
tentials of the solute atoms and vacancies respectively, where μ s0 and
μv0 are the invariant reference potentials, as and av are the activities of
the components.Rg and T are the universal gas constant and the temper-
ature respectively. −Ωσh is the contribution of mechanical energy,
where Ω is the partial molar volume of solute, which represents the
change in volume per mole of solute atoms inserted to the element,
and σh is the hydrostatic stress. Taking c and cmax as the concentration
and stoichiometricmaximumconcentration of the solute atoms, lithium
and vacancies occupy respectively fixed site fractions of c / cmax and
1 – c / cmax. The activities of each component associated with their site
fractions are as=γs ⋅c/cmax and av=γv ⋅(1−c/cmax), where γs and γv

are the corresponding activity coefficients.
Therefore, from Eq. (1), we have

μ ¼ μr þ RgT ln
c

cmax−c

� �
−Ωσh ð2Þ

where μ r=μ s0−μ v0−RgT ln(γs/γv). In the absence of experimental
data, γs / γv is usually assumed to be homogeneous in the host material.
μ r, therefore, becomes a constant reference chemical potential, which is
consistentwith the previousworks [14,15]. The contribution of the SMC
is thus implied in the second term on the right side.

According to conservation condition, lithium diffusion satisfies

∂c
∂t

¼ ∇ � −Jð Þ ¼ ∇ � Dc
RgT

∇μ
� �

ð3Þ

where J ¼ − Dc
RgT

∇μ is the lithium diffusion flux and D is the lithium

diffusivity.
For the lithium diffusion within a spherical particle of radius R, a

substitution of Eq. (2) into Eq. (3) results in
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The initial and boundary conditions corresponding to the generally
used galvanostatic control are given by:

c r;0ð Þ ¼ 0 ð5Þ

−D
cmax

cmax−c
∂c
∂r

−
Ωc
RgT

∂σh

∂r

� �����
r¼R

¼ in
F

−D
cmax

cmax−c
∂c
∂r

−
Ωc
RgT

∂σh

∂r

� �����
r¼0

¼ 0
for t N 0 ð6Þ

where in is the surface current density and F is the Faraday's constant.

2.2. Diffusion induced stress

Since atomic diffusion is much slower than the elastic deformation,
the mechanical equilibrium is treated as a static equilibrium problem.
In the absence of any body force, the force balance requires that [16]

dσ r

dr
þ 2

σ r−σθ

r
¼ 0 ð7Þ

where, σr and σθ are the radial and hoop stresses, respectively.
Using the analogy between thermal and diffusion induced stress and

assuming that the spherical particle is an isotropic linear elastic solid,
the radial and hoop stresses induced by the lithium diffusion are given
by [17]:

σ r ¼ E
1þ v

v
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−
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ð8Þ

where E and v are the elastic modulus and Poisson's ratio of the lithium
compounds, respectively. θ=εr+2εθ is the elastic volumetric strain. εr
and εθ are the radial and hoop strains and can be expressed as functions
of radial displacement u in the infinitesimal formulation of deformation

εr ¼ du
dr

εθ ¼ u
r
: ð9Þ

2.3. Numerical methods

Substituting Eqs. (8) and (9) into Eq. (7) and introducing the
traction-free boundary condition at the particle surface, the two-way
coupling between stress and lithium diffusion can be decoupled. The
obtained radial and hoop stresses are as follows

σ r ¼ 2EΩ
3 1−vð Þ
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ð10Þ

These stresses are exact for any given lithium profile because all
mechanical field equations of three-dimensional elasticity, continuity
conditions and the boundary conditions have been satisfied. To obtain
further the spatial profile of these stresses, the distribution of lithium
concentration has to be solved beforehand.

According to Eq. (10) andnoting thatσh=(σr+2σθ)/3, thediffusion
governing equation as shown in Eq. (4) can be expressed only by the
lithium concentration
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