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Computational intelligence based approaches are used in tandem to design novel age-hardenable aluminium
alloy, whichwould utilize the effect of all precipitate forming elements together, crossing the limit of the compo-
sitions defined within different series. A pool of data is created from the tensile properties of age-hardenable al-
uminium alloys in the 2XXX, 6XXX and 7XXX series. Based on the testing temperature the data is segregated, and
different models for the tensile properties in the different temperature regimes are developed using Artificial
Neural Network (ANN). The inherent relation between the composition and processing variables with the me-
chanical properties are explored using sensitivity analysis (SA). In order to design alloys with the conflicting ob-
jectives of high strength and adequate ductility, Multi-Objective Genetic Algorithm (MOGA) is used to search
optimum solutions using the ANN models as the objective functions. The Pareto solutions from MOGA and the
SA results are used along with prior knowledge of the alloy systems to design age-hardenable aluminium alloys
with improvedmechanical properties at different temperature regimes. The designed composition, which is be-
yond any of the age-hardenable series, has been developed experimentally, with encouraging results and inter-
esting observations.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Aluminium alloys that respond to heat treatment are the age-
hardenable or precipitation hardened alloys. At elevated temperature,
the second phase dissolves in the solid solution, which precipitates
upon quenching and ageing at a lower temperature. For an aluminium
alloy to be age hardened the second phase must be soluble at elevated
temperatures, but must show decreasing solubility with decreasing
temperature. This second condition of decreasing solubility with tem-
perature puts a limit on the number of useful precipitation-hardened
alloy systems [1]. With proper alloying and heat treatment, hardness
in precipitation hardened alloy can be increased to nearly 40 times as
compared to pure aluminium alloys. Therefore, it is one of themost im-
portant strengthening mechanisms in aluminium [2]. The common age
hardenable alloys are the Al–Cu (2XXX), Al–Mg–Si (6XXX) and Al–Zn–
Mg (7XXX) series of alloys, which have specific stable and metastable
precipitates and their fixed precipitation sequences for each system.
To improve the properties of these alloys, several attempts have been
made for years through minor additions [3–5] or through thermal
[6–8] or thermomechanical processing [9–14].

The performance of an alloy might be improved only if the bound-
aries of the series of alloys could be crossed and if the effects of the pre-
cipitates of the different series could be incorporated. But such effort has
never been reported by any previous worker. In this work, attempts
have been made to design alloys with improved mechanical properties
having such composition, which can have precipitates of all the three
age hardenable alloy series. Experimental trial-and-error method to
search for suitable chemical composition and processing parameters
thatwill lead to the desiredmaterial properties is tedious, time consum-
ing and costly, with no warranted results. On the other hand, unveiling
themathematical interrelationships between the composition and pro-
cessing parameters with the materials properties of the alloy will make
it possible to computationally design an alloy possessing the optimal
combination of strength and ductility [15]. The complex correlation
being difficult to describe through any physical model, data-driven
models have beenused extensively in thematerials engineeringdomain
[16–18] to successfully find such complex correlations leading to
effective materials design. Applications of this computational approach
to the design of Al alloys and composites have also been reported
[19–25]. While computational intelligence techniques, particularly
using rough and fuzzy set theories have seen wide application in map-
ping the complex composition–processing–property relationships
[26–28], Artificial Neural Network (ANN) [29,30] seems to be the most
widely used paradigm in this domain to satisfactorily extract non-
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trivial relationships between the properties and processing routes of
different materials systems.

The objective of the present paper is to design novel age hardenable
Al alloys with optimum mechanical properties; i.e. good strength and

adequate ductility. The objectives of maximizing strength and ductility
are however mutually conflicting, which can be computationally
approached as a multi-objective optimization problem [31,32] and
solved through genetic algorithm (GA) [33], a well-established

Table 1
List of input and output variables with their minimum, maximum, mean and standard deviation values at low, room and high testing temperature respectively.

Variables Symbols Low testing temperature Room testing temperature High testing temperature

Min Max Mean Std dev Min Max Mean Std dev Min Max Mean Std dev

Silicon (wt.%) Si 0.1 0.9 0.43 0.22 0.1 1.4 0.60 0.35 0.18 0.9 0.48 0.19
Iron (wt.%) Fe 0.12 1.1 0.51 0.26 0.12 1.1 0.51 0.24 0.3 1.1 0.58 0.22
Copper (wt.%) Cu 0.1 6.3 2.35 1.98 0.1 6.3 1.95 2.13 0.1 6.3 2.58 2.15
Manganese (wt.%) Mn 0 0.8 0.29 0.23 0 0.8 0.31 0.26 0 0.8 0.29 0.23
Magnesium (wt.%) Mg 0.02 2.7 1.38 0.83 0 2.8 1.07 0.77 0 2.7 1.17 0.84
Chromium (wt.%) Cr 0 0.3 0.12 0.09 0 0.4 0.10 0.10 0 0.3 0.12 0.09
Nickel (wt.%) Ni 0 2 0.12 0.43 0 2 0.13 0.47 0 2 0.14 0.47
Zinc (wt.%) Zn 0.1 6.8 1.84 2.64 0.05 6.8 1.11 2.11 0.1 6.8 1.33 2.38
Zirconium (wt.%) Zr 0 0.18 0.01 0.05 0 0.18 0.02 0.05 0 0.18 0.02 0.05
Titanium (wt.%) Ti 0 0.2 0.12 0.06 0 0.2 0.11 0.07 0 0.2 0.12 0.06
Testing temperature (°C) Ttest −269 −28 −105.5 74.2 100 371 229.8 92.7
Solutionizing temperature (°C) Tsoln 468 540 508.4 21.8 468 565 517.5 23.7 468 540 507.9 22.9
Ageing temperature (°C) Tage 24 205 149.6 51.2 24 240 123.8 70.4 24 205 140.7 60.8
Ageing time (hours) tage 1 72 31.2 26.7 1 72 36.2 30.0 1 72 31.2 26.6
Cold work cw 0 1 0.21 0.41 0 1 0.18 0.39 0 1 0.24 0.43
Yield strength (MPa) YS 97 745 402.8 145.2 90 540 300.5 118.1 10 470 124.5 118.9
Ultimate tensile strength (MPa) UTS 165 876 483.6 150.7 152 605 371.2 116.4 16 505 151.0 136.2
%Elongation %El 5 44 15.3 6.9 6 24 14.5 4.6 8 125 48.7 30.8

Fig. 1. Scatter plot for low temperature showing target vs achieved values for (a) YS, (b) UTS and (c) %El as predicted by ANN models.
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