Accepted Manuscript

Phase-selective and photoactivity investigation of solvothermal synthesized $\text{Cu}_2\text{ZnSnS}_4$ nanoparticles

Qing Zhang, Meng Cao, Wang Sheng Gao, Jin Yang, Jie Sheng Shen, Jian Huang, Yan Sun, Lin Jun Wang, Yue Shen

PII: S0264-1275(15)30815-7

DOI: doi: 10.1016/j.matdes.2015.11.074

Reference: JMADE 977

To appear in:

Received date: 17 June 2015
Revised date: 16 November 2015
Accepted date: 20 November 2015

Please cite this article as: Qing Zhang, Meng Cao, Wang Sheng Gao, Jin Yang, Jie Sheng Shen, Jian Huang, Yan Sun, Lin Jun Wang, Yue Shen, Phase-selective and photoactivity investigation of solvothermal synthesized $\rm Cu_2ZnSnS_4$ nanoparticles, (2015), doi: $10.1016/\rm j.matdes.2015.11.074$

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Phase-selective and photoactivity investigation of solvothermal synthesized

Cu₂ZnSnS₄ nanoparticles

Oing Zhang^a, Meng Cao^{a*}, Wang Sheng Gao^a, Jin Yang^a, Jie Sheng Shen^a, Jian

Huang^a, Yan Sun^b, Lin Jun Wang^a, Yue Shen^a

^aSchool of Materials Science and Engineering, Shanghai University, Shanghai, 200072, China

^bNational Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese

Academy of Sciences, Shanghai 200083, China

Abstract: Cu₂ZnSnS₄ (CZTS) nanoparticles with bandgap of about 1.5 eV were

synthesized by a simple solvothermal method with oleylamine (OAm) and ethanediamine

(En) as the reaction solvents. Raman spectra and X-ray photoelectron spectroscopy

examined the phase purities of CZTS nanoparticles. Kesterite structured CZTS were

gradually changed into the wurtzite structured CZTS by varying the volume ratios of

OAm and En, which was confirmed by X-ray diffraction measurements. Time-dependent

experiments were performed to study the mechanism of the phase selection of CZTS,

which indicated that En played an important role in the formation of wurtzite structured

CZTS. Annealing process improved the crystallinities of CZTS nanoparticle thin films,

but wurtzite structured CZTS was changed to more stable kesterite phase.

Photo-electrochemical measurement indicated that wurtzite structured CZTS nanoparticle

thin films had better photoelectric properties.

Keywords: Cu₂ZnSnS₄, Nanoparticles, Wurtzite, Solvothermal, Solar cells

* To whom correspondence should be addressed:

1

Download English Version:

https://daneshyari.com/en/article/7219185

Download Persian Version:

https://daneshyari.com/article/7219185

<u>Daneshyari.com</u>