Accepted Manuscript

Weldability Window and the Effect of Interface Morphology on the Properties of Al/Cu/Al Laminated Composites Fabricated by Explosive Welding

M.M. Hoseini Athar, B. Tolaminejad

PII: S0264-1275(15)30165-9

DOI: doi: 10.1016/j.matdes.2015.07.114

Reference: JMADE 342

To appear in:

Received date: 29 April 2015 Revised date: 14 July 2015 Accepted date: 16 July 2015

Please cite this article as: M.M. Hoseini Athar, B. Tolaminejad, Weldability Window and the Effect of Interface Morphology on the Properties of Al/Cu/Al Laminated Composites Fabricated by Explosive Welding, (2015), doi: 10.1016/j.matdes.2015.07.114

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Weldability Window and the Effect of Interface Morphology on the

Properties of Al/Cu/Al Laminated Composites Fabricated by

Explosive Welding

M. M. Hoseini Athar, B. Tolaminejad*1

Department of Metallurgy and Materials Engineering, Faculty of Engineering, University of Kashan,

Kashan, Iran

Abstract

Explosive welding is one of the joining techniques which employs high energies derived

from explosives to join materials with similar and dissimilar properties. In this paper, the

weldability criteria which should be met to achieve good welds were calculated for

aluminum-copper joints. Different morphologies for welding interface (straight, wavy and

melted layer) were obtained with changing welding parameters. Results on the

microstructure, micro-hardness and tensile-shear tests were reported. Tensile-shear test

results indicate that shear bond strength increases with increasing explosive ratio. However,

shear bond strength decreases when the explosive ratio exceeds R=2.2 due to the formation of

brittle intermetallics at the interface. This knowledge may be utilized for establishment of a

relation between microstructure and properties in the process of manufacturing.

Keywords: Explosive welding; Welding window; Al/Cu Bimetal; Explosive ratio; Bond

strength

1. Introduction

Laminated composite sheets fabricated by alternating metal layers with

different properties are increasingly used in modern engineering. These

materials consisting of aluminum and copper layers are intermediate products

Corresponding author

Email address: tolaminejad@kashanu.ac.ir (Behzad Tolaminejad)

1

Download English Version:

https://daneshyari.com/en/article/7220502

Download Persian Version:

https://daneshyari.com/article/7220502

<u>Daneshyari.com</u>