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a b s t r a c t

A method is presented that enables predictions of long-term creep–rupture strength based on a small
sample of short-term experimental results. Smoothed bootstrapping in combination with the most
commonly used time–temperature parameters is used for the determination of the optimal values of
coefficients. For ten metals, creep–rupture strengths are evaluated for both full-size and sub-size data
sets. Predictions in the case of small data sets always lie on the conservative side, whereas the confidence
interval of predicted strengths decreases with an increasing number of experimental results. However it
is shown here that for the evaluated materials, usable interim predictions of creep–rupture strengths can
be achieved.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Thermal and mechanical loadings can cause fatigue and creep
failures of products operating under variable conditions (e.g. an
automotive exhaust system [1–6]). Both fatigue and creep mecha-
nisms can affect a product at any time during operation. However,
whilst the fatigue mechanism is significant under any temperature
regime, the creep mechanism is especially intense as the tempera-
ture rises [7–10]. Many creep–rupture models exist, and paramet-
ric models in particular play an important role in the prediction of
rupture strengths [11]. Since their introduction, first by Larson and
Miller [12], Manson and Haferd [13] and later by Orr et al. [14],
time–temperature parameters have become a common method
of describing creep–rupture data [11,15,16]. A variety of other
time–temperature parameters have been developed since, i.e.
Manson–Succop [17], Goldhoff-Sherby [18], Soviet model [19],
Minimum commitment model [20], etc. each suggesting a different
description of master curves representing the relation between
logarithmic stress log r and logarithmic time to rupture log tr for
temperature T. In addition to the rupture strength, some creep–
rupture models also describe the change in creep strain up to the
point of rupture, i.e. Theta projection model [21] and the Wilshire
approach [22].

The Restrained–Manson–Brown (RMB) parameter [10,23],

RMB ¼ log tr � log ta � T jqj�1

ðT � Ta � hqiÞq
; ð1Þ

has been introduced as one of the approaches for unification of the
most commonly used time–temperature parameters and has been
proposed as a modified form of the well-known Manson–Brown
(MB) parameter [24]. The RMB parameter therefore resembles all
the properties of the MB parameter but is numerically advanta-
geous to solve because the coefficients log ta, Ta and q can be gained
by solving a set of linear equations rather than nonlinear equations,
as is the case for the MB parameter. Depending on the value of the
coefficient q, the RMB parameter can represent the Manson–Haferd
(MH) parameter (q = 1),

MH ¼ log tr � log ta

T � Ta
; ð2Þ

the Orr–Sherby–Dorn (OSD) parameter (q = 0),

OSD ¼ log tr �
log ta

T
; ð3Þ

or the Larson–Miller (LM) parameter (q = �1),

LM ¼ Tðlog tr � log taÞ: ð4Þ

In addition, the RMB parameter can also suggest its own solution
(Eq. (1)) if q – {1, 0, �1}. The calculated values of coefficients always
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ensure the best fit to the input data. Yet the quality of every creep–
rupture model depends on the range and the duration of the avail-
able test results and their scatter. Although mechanical components
can be designed to operate for up to 250,000 h under variable
conditions, creep–rupture tests are usually performed for much
shorter durations and only for a finite number of test temperatures
and stresses [24,25]. Furthermore, even under controlled testing, a
considerable scatter of test results is observed [24,26]. Thus a good
model will reliably predict the time to rupture or the rupture
strength inside and outside the test range for any given temperature
and accordingly consider the observed scatter. Methods are
available to deal with such scatter, e.g. a percentage of outliers from
the recommended scatter limits [27] or alternatively a ‘‘service con-
dition-creep rupture property’’ interference (SCRI) model [28].

Comparisons of existing time–temperature parameters have
been published frequently [11,16,29–31]. Interestingly, the basic
parameters such as the LM parameter still give promising results
despite their relative simplicity [11,30,31].

The main challenge of any creep model remains a reliable extrap-
olation of the rupture strength beyond the longest experimental
time to rupture, especially for small data sets [11,16,29,32,33].
Reportedly, in some cases 50 experimental results are sufficient
for reliable extrapolation but sometimes even 100 results do not
give satisfactory predictions [27].

On the contrary, only a very limited data set of experimental
results can be available. This is usually the case when new alloys
are being tested [11] or if damage is predicted for thermomechan-
ically loaded components where fatigue is expected to contribute
more to the total damage than creep [9]. In these situations, the
determination of master curves can only be based on an interim
experimental data set (e.g. 9–20 experimental results, that is 3–5
stress levels at 3 or 4 test temperatures [34,35]). These tests are
mostly carried out over a relatively short period of time, i.e. up
to three months. As can be expected, the long-term predictions
based on these results will probably not meet the requested crite-
ria or can fall outside the critical boundaries. The aim of this paper
is therefore to show how it is possible to accomplish a useful out-
come where only a small set of experimental results is available.

The use of statistical tools on creep–rupture data is not an
entirely new approach and has previously been attempted by many
authors. Kim et al. [32] reported on the statistical properties of
creep–rupture data. Holt and Bradford applied probabilistic model-
ling to predict the lifetime of nuclear boilers [36]. Remaining creep
life predictions based on statistical models have been carried out by
Baraldi et al. [37] whilst Evans set a statistical framework which
enables the definition of confidence limits using the Wilshire equa-
tions [38]. Statistical processing has also been used for the evalua-
tion of scatter in the experimental creep–rupture data [39] and
extrapolation [16], however on a data set also including long-term
results. Here, statistical processing is applied to short-term results
only. While temperature and stress during a creep–rupture test
must be supervised and maintained constant, their values cannot
be varied in the search for the optimal values of coefficients. Hence
the stress and the temperature are considered deterministic vari-
ables. However the time to rupture is observed with scatter as a rule
and can thus be considered a random variable. Consequently, the
predicted master curves determined from the experimental results
can then also be considered random. A regularisation technique, i.e.
smoothed bootstrapping [40,41] is then applied to the experimen-
tal data set. Using this technique and by employing input polynomi-
als the number of input data can be virtually raised. By intensive
re-sampling it is then possible to gain confidence intervals for the
estimated creep–rupture strengths. Finally, medians are given as
the estimates for creep–rupture strengths [16,36].

The RMB parameter has been used throughout this analysis as the
main creep–rupture model. Additionally, the LM, the MH and OSD

parameters have been considered and the predictions of the rupture
strengths of the four parameters have been compared. However, any
other creep model could be considered in the method instead.

Time–temperature parameters are compared on existing data
sets of creep–rupture experimental results for ten metals [42].
The first and the second comparison in Section 3 serve as a refer-
ence for the results of the proposed method and have been con-
ducted according to the European Creep Collaborative Committee
(ECCC) recommendations [27]. In particular, the post assessment
acceptability criteria for the creep–rupture data assessment have
been considered by performing post assessment tests (PAT). Fol-
lowing these recommendations, three main evaluations have to
be carried out:

� physical realism of the predicted master curves (PAT-1.1, PAT-
1.2 and PAT-1.3), where master curves are checked visually,
� effectiveness of the model prediction within the range of the

input data (PAT-2.1 and PAT-2.2), where diagrams of predicted
creep–rupture times log tr versus experimental creep–rupture
times log tr,e are examined, and
� repeatability and stability of the extrapolations (PAT-3.1 and

PAT-3.2), where experimental results are randomly culled and
the deviations of predicted rupture strengths are compared.

ECCC recommendations also provide some key recommenda-
tions for the assessment of sub-size creep–rupture data sets: at
most 20 % deviance of master curves from the full-size data set
and the rupture strengths at test temperatures should be repro-
duced to within 10 % for a given time to rupture. For further details
on the ECCC recommendations, the reader is referred to [27].

2. Methodology

The method outlined in this section is summarised in Fig. 1.
A set of experimental results {Ti, rij,e, trij,e}o; i = 1, . . ., nT;

j = 1, . . ., nri; o = 1, . . ., no; where trij,e and rij,e represent an experi-
mental creep time to rupture and an experimental stress, respec-
tively, is considered as an independent and identically distributed
randomly chosen sample from all possible experimental outcomes.

nT is the number of experimental temperatures, nri is the num-
ber of available results at i-th temperature and no is the number of
chosen samples. For a test temperature Ti of the material of
interest, an m-th order polynomial is fitted through logarithmic
experimental results {Ti, log trij,e, log rij,e}o. A least-squares error
function R2

1i is defined as

R2
1i ¼

Xnri

j¼1

log t�rij;e � log trij;e

� �2
; i ¼ 1; . . . ;nT; ð5Þ

where log t�rij;e represents the fitted logarithmic creep time to rup-
ture. The latter is described by an m-th order polynomial as

log t�rij;e ¼
Xm

k¼0

bikðlog rij;eÞk: ð6Þ

Considering Eq. (6), the least-squares error function R2
1i can be

rewritten as

R2
1i ¼

Xnri

j¼1

Xm

k¼0

bikðlogrij;eÞk � log trij;e

 !2

; i ¼ 1; . . . ;nT: ð7Þ

Optimal values of coefficients bik can be found by minimising R2
1i,

@R2
1i

@bik
¼
@
Pnri

j¼1

Pm
k¼0bikðlogrij;eÞk � log trij;e

� �2

@bik
¼ 0; i ¼ 1; . . . ;nT:

ð8Þ

D. Šeruga, M. Nagode / Materials and Design 67 (2015) 180–187 181



Download English Version:

https://daneshyari.com/en/article/7220703

Download Persian Version:

https://daneshyari.com/article/7220703

Daneshyari.com

https://daneshyari.com/en/article/7220703
https://daneshyari.com/article/7220703
https://daneshyari.com

