
Accepted Manuscript

Influence of Martensite-Austenite Constituents Formed at Different Intercritical Temperatures on Toughness

Xueda Li, Yuran Fan, Xiaoping Ma, S.V. Subramanian, Chengjia Shang

PII:	S0261-3069(14)00816-4
DOI:	http://dx.doi.org/10.1016/j.matdes.2014.10.028
Reference:	JMAD 6887
To appear in:	Materials and Design
Received Date:	14 April 2014
Accepted Date:	13 October 2014

Please cite this article as: Li, X., Fan, Y., Ma, X., Subramanian, S.V., Shang, C., Influence of Martensite-Austenite Constituents Formed at Different Intercritical Temperatures on Toughness, *Materials and Design* (2014), doi: http://dx.doi.org/10.1016/j.matdes.2014.10.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Influence of Martensite-Austenite Constituents Formed at

Different Intercritical Temperatures on Toughness

Xueda Li¹, Yuran Fan², Xiaoping Ma³, S.V. Subramanian³, Chengjia Shang^{1*}

¹School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China, 100083

²China Petroleum Pipeline Research Institute, Langfang, China, 065000

³Department of Materials Science and Engineering, McMaster University, Hamilton, Canada, L8S 4L8

Abstract

The objective of the present study is to elucidate the impact of Martensite-Austenite (M-A) constituents formed at different intercritical temperatures on toughness. Gleeble thermal simulation technique has been used to produce different intercritically reheated coarse grained heat affected zone (ICCGHAZ) microstructures corresponding to different reheating temperatures between Ac_1 and Ac_3 . The instrumental Charpy impact test results of dual pass thermal simulation showed that Charpy impact toughness improved with the increasing of second peak temperature. The fraction of M-A constituent was similar at each temperature. Near-connected coarse necklacing M-A constituents (2.4 μ m) formed at 760°C (near to Ac₁) led to the worst toughness (42 J) while those formed at 800°C and 840°C (near to Ac₃) resulted in better toughness, respectively 80 J and 105 J. M-A constituents formed at 800°C were still coarse (2.2 μ m) but had larger interspace compared to 760°C. And those formed at 840°C were refined (1.9 µm) and well dispersed by matrix. Notable difference in toughness values is attributed to the size and distribution of M-A constituents formed at different intercritical temperatures. It is possible to achieve better toughness if M-A constituents are well controlled: smaller in size and larger in interspacing.

Keywords: Martensite-Austenite Constituents; Intercritically Reheated Coarse-Grained Heat-Affected Zone; Intercritical Region; Thermal Simulation; Charpy Impact Toughness

Corresponding Author: Chengjia Shang, **Email:** <u>cjshang@ustb.edu.cn</u>, **Tel/Fax:** +86 10 62332428.

Download English Version:

https://daneshyari.com/en/article/7220774

Download Persian Version:

https://daneshyari.com/article/7220774

Daneshyari.com