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a b s t r a c t

We prove the well-posedness of a general evolution reaction–nonlocal diffusion
problem under two sets of assumptions. In the first set, the main hypothesis is the
Lipschitz continuity of the range kernel and the bounded variation of the spatial
kernel and the initial datum. In the second set of assumptions, we relax the Lipschitz
continuity of the range kernel to Hölder continuity, and assume monotonic behavior.
In this case, the spatial kernel and the initial data can be just integrable functions.
The main applications of this model are related to the fields of Image Processing
and Population Dynamics.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In this article, we study the well-posedness of a general class of evolution reaction–nonlocal diffusion
problems expressed in the following form. Let T > 0 and Ω ⊂ Rd (d ≥ 1) be an open and bounded set with
Lipschitz continuous boundary. Find u : [0, T ] × Ω → R such that

∂tu(t, x) =
∫
Ω

J(x − y)A(t, x, y, u(t, y) − u(t, x))dy + f(t, x, u(t, x)), (1)

u(0, x) = u0(x), (2)

for (t, x) ∈ QT = (0, T ) × Ω , and for some u0 : Ω → R.
The main examples we have on mind are connected to the fields of Population Dynamics and of Image

Processing. In the first case, choosing for instance A(t, x, y, s) = s, we describe the balance of population
coming in and leaving from x, as ∫

Ω

J(x − y)u(t, y)dy − u(t, x),

where the convolution kernel J ≥ 0, with
∫

J = 1, determines the size and the shape of the influencing
neighborhood of x. In absence of a reaction term, the resulting equation is a nonlocal diffusion variant of
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the heat equation, usually written as

∂tu(t, x) =
∫
Ω

J(x − y)
(
u(t, y) − u(t, x)

)
dy.

In this context, the nonlocal p-Laplacian diffusion operator, corresponding to A(t, x, y, s) = |s|p−2s, for
p ∈ [1, ∞], is also a well known example, leading to the equation

∂tu(t, x) =
∫
Ω

J(x − y)|u(t, y) − u(t, x)|p−2(
u(t, y) − u(t, x)

)
dy.

These two examples correspond to a choice for which A is a non-decreasing function of s. These kinds of
problems have been studied at great length by Andreu et al. in a series of works, see the monograph [1]. Their
results, strongly dependent on the monotonicity of A, include the well-posedness as well as properties such
as the stability with respect to the initial data or the convergence of related rescaled nonlocal problems to
their corresponding local versions. It is worth mentioning that problems of the type (1) related to monotone
functions, A, can be seen as gradient descents of convex energies. For instance, for the p-Laplacian, the
nonlocal energy is given by

Jp(u) = 1
p

∫
Ω

∫
Ω

J(x − y)|u(t, y) − u(t, x)|p.

In the examples arising in Image Processing, the monotonicity of A is not the rule. A very useful denoising
filter, the bilateral filter [2–5], which provides results similar to the Perona–Malik equation [6,7] or to the
Total Variation restoration filter [8,9], takes the form

Bu(x) = 1
C(x)

∫
Ω

exp
(

−|x − y|2

ρ2

)
exp

(
−|u(x) − u(y)|2

h2

)
u(y)dy,

where u is the image to be filtered, ρ and h are constants modulating the sizes of the space and range
neighborhoods where the filtering process takes place, and C is the normalizing factor

C(x) =
∫
Ω

exp
(

−|x − y|2

ρ2

)
exp

(
−|u(x) − u(y)|2

h2

)
dy.

Neighborhood filters like B may also be derived from variational principles [10], being their correspondent
gradient descent approximations given by nonlocal equations of the type (1). Indeed, defining

J(x) = exp
(

−|x|2

ρ2

)
, A(t, x, y, s) = exp

(
− s2

h2

)
, (3)

we have that (1) is the gradient descent associated to the nonconvex energy functional

JB(u) =
∫
Ω

∫
Ω

exp
(

−|x − y|2

ρ2

)(
1 − exp

(
−|u(x) − u(y)|2

h2

))
dxdy,

for which the filter Bu(x) is just a one step algorithm in the search direction.
From the definition of A given in (3), we readily see its lack of monotonicity. Thus, the approach followed

by Andreu et al. may not be employed to show the well-posedness of the related gradient descent problem.
Besides, there are other situations that we would like to cover for this kind of nonlocal diffusion problems

which have been not treated, as far as we know, in the literature. One of them is allowing the convolution
kernel, J , to be discontinuous. This is the case we encounter for the Yaroslavsky filter [11], with much faster
numerical implementations than that of (3), see [12–14], which is given by

J(x) = 1Bρ(x)(y), A(t, x, y, s) = exp
(

− s2

h2

)
, (4)

where 1Bρ(x) is the characteristic function of the ball Bρ(x).
Another situation we are interested in is that in which the power, p, of the p-Laplacian is not constant,

which finds applications in image restoration. Two important examples are the following:
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