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a b s t r a c t

In this paper, we examine a general m-component reaction–diffusion matrix with
a full diffusion matrix and polynomially growing reaction terms through its
diagonalization. We establish the invariant regions of the system and derive the
necessary conditions for the existence of solutions. The 3 × 3 case is taken as a case
study, where we determine the exact conditions for the positivity of the eigenvalues,
which is necessary for the diagonalization process. Numerical examples are used to
illustrate and confirm the findings of this paper.
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1. Introduction

The present paper is concerned with the global existence of solutions for a reaction–diffusion system
with a full diffusion matrix and polynomial growth. The main motivation behind this work is the fact that
most reaction–diffusion systems found in the literature assume that the diffusion matrix is a diagonal one,
meaning that the spatial dispersion of every species in a certain region is only a result of the same species’
concentration gradient (self-diffusion). Although assumed by many due to the fact that it greatly simplifies
the calculations and proofs, it may not be realistic in many scenarios. Some recent studies including [1]
have shown that in many cases, the diffusion of one species due to a concentration gradient in another
(cross-diffusion) is considerable and may even surpass the self-diffusion.

In this paper, we consider the general system given by
∂U

∂t
− A∆U = F (U) in Ω × (0, +∞) , (1.1)

with boundary conditions:

αU + (1 − α) ∂ηU = B on ∂Ω × (0, +∞) , (1.2)
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or

αU + (1 − α) A∂ηU = B on ∂Ω × (0, +∞) , (1.3)

and initial data:

U (0, x) = U0 (x) on Ω . (1.4)

In the context of this paper, Ω is an open bounded domain of class C1 in RN with boundary ∂Ω , ∂
∂η denotes

the outward normal derivative on ∂Ω . We define the vectors U , F , and B trivially as

U := (u1, . . . , um)T
,

F := (f1, . . . , fm)T
,

B := (β1, . . . , βm)T
.

The matrix

A =

⎛⎜⎜⎜⎝
a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

. . .
...

am1 am2 · · · amm

⎞⎟⎟⎟⎠ (1.5)

contains the real diffusion coefficients of the system. The matrix AT is assumed to be diagonalizable with
positive distinct eigenvalues 0 < λ1 < λ2 < · · · < λk and eigenvectors V1, V2, . . . ,Vm with

Vℓ = (v1ℓ, . . . , vmℓ)T

for ℓ = 1, . . . , m. Note that the eigenvalues of AT are identical to those of A. However, the eigenvectors are
different. It follows that the determinant equals

det
(
AT

)
=

k∏
ℓ=1

λ
mℓ
ℓ ,

where mℓ denotes the algebraic multiplicity corresponding to eigenvalue λℓ. Obviously, the sum of the
multiplicities must be equal to the number of columns in AT , i.e.

k∑
ℓ=1

mℓ = m.

For notational purposes, let us define the eigenvectors associated with the ℓth distinct eigenvalue λℓ as

Vσℓ+1, Vσℓ+2, . . . , Vσℓ+m
ℓ
, ℓ = 1, . . . , k,

with

σℓ =

⎧⎪⎨⎪⎩
0 ℓ = 1
ℓ−1∑
i=1

mi ℓ = 2, . . . , k.

The eigenvectors are arranged into the matrix P defined as

P =
(

(−1)i1V1 (−1)i2V2 ... (−1)imVm

)
, (1.6)
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