Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/nonrwa)

Nonlinear Analysis: Real World Applications

www.elsevier.com/locate/nonrwa

Periodic solutions for Liénard equation with an indefinite singularity^{*}

Shiping Lu[*](#page-0-1), Yuanzhi Guo, Lijuan Chen

Col lege of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China

A R T I C L E I N F O

Article history: Received 25 September 2017 Received in revised form 19 July 2018 Accepted 20 July 2018

Keywords: Liénard equation Continuation theorem Periodic solution Singularity

A B S T R A C T

In this paper, the problem of periodic solutions is studied for Liénard equations with an indefinite singularity

$$
x''(t) + f(x(t))x'(t) + \varphi(t)x^{m}(t) - \frac{\alpha(t)}{x^{\mu}(t)} = 0,
$$

where $f : (0, +\infty) \to \mathbb{R}$ is a continuous function which may have a singularity at the origin, the signs of φ and α are allowed to change, *m* is a non-negative constant, and μ is a positive constant. The approach is based on a continuation theorem of Manásevich and Mawhin with techniques of a priori estimates. The main results partly answer the open problem proposed by R. Hakl, P.J. Torres and M. Zamora in the known literature.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we are concerned with the existence of positive *T*-periodic solutions for the equations with an indefinite singularity

$$
x''(t) + f(x(t))x'(t) + \varphi(t)x^{m}(t) - \frac{\alpha(t)}{x^{\mu}(t)} = 0,
$$
\n(1.1)

where $f \in C((0, +\infty), \mathbb{R})$, φ and α are *T*-periodic functions with φ and α in $L([0, T], R)$, m, μ are constants with $m \geq 0$ and $\mu > 0$. In this equation, the function $f(x)$ may have a singularity at $x = 0$. Besides this, the signs of $\alpha(t)$ and $\varphi(t)$ are all allowed to change. The equations of this type arise in modeling of important problems appearing in many physical contexts (see [[1–](#page--1-0)[6\]](#page--1-1) and the references therein).

✩ This work was supported by NSF of China (No. 11271197).

Corresponding author.

<https://doi.org/10.1016/j.nonrwa.2018.07.024> 1468-1218/© 2018 Elsevier Ltd. All rights reserved.

E-mail addresses: lushiping88@sohu.com (S. Lu), 1029158296@qq.com (Y. Guo), 002084@nuist.edu.cn (L. Chen).

In the past years, under the conditions of $\varphi(t) \geq 0$ and $\alpha(t) > 0$ for a.e. $t \in [0, T]$, the problem of existence of periodic solutions to the equation without friction term

$$
x''(t) + \varphi(t)x(t) - \frac{\alpha(t)}{x^{\mu}(t)} = 0
$$

has been extensively studied [[7–](#page--1-2)[21](#page--1-3)]. Beginning with the paper of Habets–Sanchez [[22\]](#page--1-4), many researchers in $[23–30]$ $[23–30]$ $[23–30]$ have considered the classical Lienard equation with a singularity of repulsive type

$$
x''(t) + f(x(t))x'(t) + \varphi(t)x(t) - \frac{l}{x^{\mu}(t)} = 0,
$$
\n(1.2)

where $l > 0$ is a constant. In these papers, apart from the function $\varphi(t)$ satisfies $\varphi(t) \geq 0$ for a.e. $t \in [0, T]$, the strong force condition $\mu \in [1, +\infty)$ and $f(x)$ being continuous on $[0, +\infty)$ are needed. But up to our knowledge, few papers have considered the possibility of a singularity in $f(x)$. We only find that R. Hakl, PJ. Torres and M. Zamora in [\[27](#page--1-7)] and [\[31](#page--1-8)] studied the problem of periodic solutions for the singular equation of repulsive type

$$
x'' + f(x)x' + \varphi(t)x^{m} + \frac{g_1}{x^{\mu}} - \frac{g_2}{x^{\gamma}} = 0,
$$
\n(1.3)

where g_1 and g_2 are constants with $g_1 \geq 0$ and $g_2 > 0$, $\varphi \in L([0,T], \mathbb{R})$ is a *T*-periodic function with $\bar{\varphi} \geq 0$, and $f \in C((0, +\infty), \mathbb{R})$ may have a singularity at $x = 0$, i.e., $\lim_{x\to 0^+} f(x) = \infty$. By using Schaefer's fixed point theorem and the method of upper and lower solutions, they obtained many results on the existence of positive periodic solutions to [\(1.3\)](#page-1-0) for the case of $0 \le m < +\infty$ and $\mu < \gamma$. Now, we present some of them.

Theorem 1.1 ($\lceil 27 \rceil$). Let us assume $0 \le m < 1$, $\gamma > \mu$, $\gamma \ge 1$, and

$$
\int_0^1 \max\{f(s), 0\} ds < +\infty \text{ or } \int_0^1 \min\{f(s), 0\} ds > -\infty. \tag{1.4}
$$

Then [\(1.3\)](#page-1-0) *has at least one positive T*-*periodic solution.*

Theorem 1.2 ([\[27](#page--1-7)]). Let us assume $m = 1$, $\gamma > \mu$, $\gamma \geq 1$, and suppose that [\(1.4\)](#page-1-1) holds. If $\bar{\varphi} \geq 0$, $g_1 + |\bar{\varphi}| > 0$ *and*

$$
\int_0^T \max\{\varphi(s), 0\} ds < \frac{4}{T},
$$

then [\(1.3\)](#page-1-0) *has at least one positive T*-*periodic solution.*

Theorem 1.3 ([[31\]](#page--1-8)). Let us assume $m > 1$, $\gamma > \mu$, $g_1 > 0$ and $g_2 > 0$. If

$$
0 \ge \varphi(t) \ge -\sup\left\{\frac{g_1}{x^{\mu}} - \frac{g_2}{x^{\gamma}} : x \in (0, +\infty)\right\} \text{ for } a.e. t \in [0, \omega]
$$
\n(1.5)

and $\bar{\varphi}$ < 0, then [\(1.3\)](#page-1-0) has at least one positive *T*-periodic solution.

From [Theorems 1.1](#page-1-2) and [1.2](#page-1-3), we see that the constant *m* in [\(1.3\)](#page-1-0), which is the degree of power function $\varphi(t)x^m$, is needed in [0, 1]. Furthermore, the constants of γ and μ in [\(1.3\)](#page-1-0) are required to be $\gamma > \mu$ and $\gamma \geq 1$, which implies that the singular restoring force term $(\frac{g_1}{x^{\mu}} - \frac{g_2}{x^{\gamma}})$ satisfies the strong force condition, i.e.,

$$
\int_0^1 \left(\frac{g_1}{s^{\mu}} - \frac{g_2}{s^{\gamma}}\right) ds = -\infty.
$$

Download English Version:

<https://daneshyari.com/en/article/7221893>

Download Persian Version:

<https://daneshyari.com/article/7221893>

[Daneshyari.com](https://daneshyari.com)