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a b s t r a c t

In this paper we provide an upper bound on the maximum number of limit
cycles for a class of generalized polynomial Liénard differential systems ẋ = y,
ẏ = −fn(x)y − gm(x) with fn and gm real polynomials of degree n and m
respectively, using the fourth order averaging method.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction and statement of the main results

For polynomial Liénard differential equations

ẍ + f(x)ẋ + g(x) = 0, (1)

with f(x) and g(x) polynomials of degree n and m respectively, there appeared a conjecture on the maximum
number of limit cycles of system (1) with g(x) = x, posed by Lins Neto, de Melo and Pugh [1] in 1977,
which states that system (1) with g(x) = x has at most n−1

2 limit cycles. This conjecture was verified only
for n ≤ 4, where for n = 1, 2, 3 it was proved by Lins Neto et al. [1], and for n = 4 by Li and Llibre [2]. For
n > 5 the conjecture is not correct, see [3–5]. De Maesschalck and Huzak proved in 2015 that the classical
Liénard system could have n − 2 limit cycles for n ≥ 6.

For applying the averaging methods to study the number of limit cycles of system (1), one considers
system (1) with

f(x) = εf1(x) + ε2f2(x) + ε3f3(x) + ε4f4(x),

g(x) = x + εg1(x) + ε2g2(x) + ε3g3(x) + ε4g4(x),
(2)
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where fi and gi are polynomials of degree n and m for i = 1, 2, 3, 4. Equivalently, we write Eq. (1) in the
Liénard differential systems

ẋ = y,

ẏ = −x −
(
εf1(x) + ε2f2(x) + ε3f3(x) + ε4f4(x)

)
y (3)

−
(
εg1(x) + ε2g2(x) + ε3g3(x) + ε4g4(x)

)
.

In 2010 Llibre, Mereu and Teixeira [6] obtained the maximum number of limit cycles of the polynomial
system (3) with f, g given in (2) bifurcating from the periodic orbits of the linear center ẋ = y, ẏ = −x

through the third order averaging method. The maximum number is

(a)
[

n
2
]
, via the first order averaging method;

(b) max
{[

n−1
2
]

+
[

m
2
]

,
[

n
2
]}

via the second order averaging method;
(c)

[
n+m−1

2
]

via the third order averaging method;

Here we will continue this work to provide an upper bound on the number of limit cycles of system (3)
using the fourth order averaging method.

Our main result is the following.

Theorem 1. Assume that fi and gi for i = 1, . . . , 4 are polynomials of degree n and m respectively. Then
for |ε| > 0 sufficiently small, the maximum number, say H4(n, m), of limit cycles of the polynomial Liénard
differential systems (3) bifurcating from the periodic orbits of the linear center ẋ = y, ẏ = −x using the
fourth order averaging theory is no more than

H4(m, n) =

⎧⎪⎪⎨⎪⎪⎩
4n + 1, m < n + 1, n odd,
4m − 3, m ≥ n + 1, n odd,
4n − 3, m < n + 1, n even,
4m − 3, m ≥ n + 1, n even.

At the moment we do not know if the upper bound in Theorem 1 can be reached.
The rest of this paper is contributed to the proof of Theorem 1, where lots of detailed calculations were

omitted because of their big blocks. If readers are interested in them we would like to provide them in an
additional sheet.

2. Proof of Theorem 1

The mail tool of our proof to Theorem 1 is the fourth order averaging method. For readers’ convenience
and in order that this paper is self-contained, we recall this method here.

2.1. The fourth order averaging method

The following result provides the first four averaging functions of a periodic differential equation. For
more details, see [7].

Lemma 1 (The Fourth Order Averaging Method). Consider the following first order periodic differential
equation of period T

ẋ = εF1(t, x) + ε2F2(t, x) + ε3F3(t, x) + ε4F4(t, x) + ε5R(t, x, ε), (4)

where Fi ∈ C0(R × D, R) and R ∈ C0(R × D × (−ε0, ε0),R) are periodic functions of period T in t for
i = 1, 2, 3, 4 and D ⊂ R an open set. We have the next assumptions.
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